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a b s t r a c t

We derive a canonical model for gradient frequency neural networks (GFNNs) capable of processing time-
varying external stimuli. First, we employ normal form theory to derive a fully expanded model of
neural oscillation. Next, we generalize from the single oscillator model to heterogeneous frequency
networks with an external input. Finally, we define the GFNN and illustrate nonlinear time-frequency
transformation of a time-varying external stimulus. This model facilitates the study of nonlinear time-
frequency transformation, a topic of critical importance in auditory signal processing.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Most existing work on neural oscillator networks focuses
on the intrinsic dynamics of networks with a homogeneous
distribution of oscillator frequencies. The truncated normal form
(see, e.g., [1–3]) provides a suitable canonical model for the study
of network dynamics in such cases (e.g., [4,5]) because it includes
all resonant terms necessary to understand the interactions of
oscillators with equal (or ε-close) frequencies. We wish to study
heterogeneous frequency oscillator networks that process external
stimuli because this topic is of critical relevance to understanding
auditory processing. A growing body of evidence suggests that the
auditory nervous system is highly nonlinear, and that nonlinear
transformations of auditory stimuli have important functional
consequences [6–10]. Thus, findings and interpretations about
the dynamics of heterogeneous networks may have relevance for
cochlear modeling [11–14] and brainstem physiology [9,15,10], as
well as pitch and music perception [16–18].
Our goal is to develop a model of neural oscillation that facil-

itates investigations of the nonlinearities that underlie auditory
physiology and perception. Our approach involves specifying an
appropriate class of oscillators and transforming it to a generic
form, known as a normal form, via normal form theory [3,19,20,2,1].
Normal forms are important analytical tools in the local analysis of
dynamical systems in the neighborhood of elementary solutions
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such as equilibria and periodic orbits. The principal goal of normal
form theory is to obtain local coordinates in terms of which a dy-
namical system near an elementary solution has a ‘‘simplest’’ form
or canonical representation which, in turn, can facilitate its analy-
sis. The structures of the normal forms we consider are in terms of
‘‘resonances’’ (e.g., [19,20,1]).
An important issue that arises when considering the external

stimulation of an oscillator network is that the structure of the
input to any given oscillator is not known in advance. Moreover, at
any given time, the stimulusmay contain a combination of external
and internal (within the network) signals. The key to our approach
to obtaining a canonical model is to fully expand the nonlinearities
and the resonant terms of the normal form for each oscillator
based on its natural frequency. Any frequencies in the stimulus
that ‘‘resonate’’ with the natural frequency will have significant
effects on the canonical oscillator’s dynamics. This approach leads
us to consider external stimulation at the level of the canonical
model instead of at the level of the original class of oscillators,
simplifying the analytical nature of the resulting model. In what
follows, we define gradient-frequency neural networks (GFNN’s)
and derive a canonical GFNN. We compare the nonlinear time-
frequency transformation of an acoustic stimulus by a GFNN based
on Wilson–Cowan oscillators and a GFNN based on our canonical
model.

2. A truncated canonical model for neural oscillator networks

Consider the general system of coupled neural oscillators
modeled by the network equations:

u̇i = fi(ui, vi, λ)+ εpi(u1, v1, . . . , un, vn, ε)
v̇i = gi(ui, vi, λ)+ εqi(u1, v1, . . . , un, vn, ε).

(1)
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In Eq. (1), {ui, vi} ⊂ R represent the coordinates of the state
of the ith oscillator. λ represents the set of parameters of the
functions fi and gi. ε > 0 is a connectivity parameter.
Appendix A, briefly reviews one of the standard procedures for

obtaining normal forms and clarifies the relationship between a
normal form and a canonical model. As discussed in Appendix A,
the classical analysis leading to a normal form for Eq. (1) involves
a coordinate transformation, dependent on the Jacobian matrix of
the system, and an expansion of the nonlinearities. For the class
of neural oscillators represented by Eq. (1), normal form theory
(see [1,5,2,21,3,22]) leads to a generic form (Eq. (2)) in a new
complex valued state variable, z, resulting from the coordinate
transformation.
żi = zi(ai + bi|zi|2)+ xi(t)+ h.o.t., i ∈ {1, . . . , n ∈ Z+}
where

xi(t) =
n∑
j6=i

cijzj, {ai, bi, cij, zi} ⊂ C.
(2)

Eq. (2) is also a canonicalmodel representing the local dynamics
about an Andronov–Hopf bifurcation for the entire class of neural
oscillators given by Eq. (1). It has complex-valued parameters ai
and bi which can be related, via the coordinate transformation
(see [1,5]), to the parameters of the original system (Eq. (1)).
In standard complex form, ai = αi + ıωi, where ωi is the
natural frequency or eigenfrequency of the ith oscillator, and bi =
βi + ıδi. The complex coefficients cij represent the coupling
strengths among the oscillators. Note that xi(t) represents the total
combination of input to the ith oscillator, including all coupled
inputs from other oscillators. The system given by Eq. (2) is an
appropriate model for the study of a system such as Eq. (1) near
one of its bifurcation points, e.g., at an Andronov–Hopf bifurcation,
where each oscillator will have a specific frequency. Normal form
models, with the addition of an external stimulus, i.e., xi(t) =
s(t) + cijzj, have been proposed to capture some functionally
important nonlinearities of the mammalian cochlea [23,13].
Eq. (2) is referred to as a truncated normal form because the

expansion of the nonlinearities (Eq. (1)) is truncated, effectively
ignoring the higher order terms, h.o.t . It is important to realize,
however, that any interactions between oscillators of different
frequencies in Eq. (1) would be captured in the higher order terms
of Eq. (2). But if it is assumed that all oscillators in the network have
frequencies that are ε-close (see, e.g., [1] Thm. 5.8 Pg. 165), then the
higher order terms have a negligible effect on the dynamics of the
system, and there is a canonical model given by Eq. (3).

żi = zi(ai + bi|zi|2)+
n∑
j6=i

cijzj

+O(
√
ε), i ∈ {1, . . . , n ∈ Z+}. (3)

The behavior of the canonical system Eq. (3) can be further
understood by transforming it to polar coordinates (Eq. (4)) by
expressing zi in terms of its amplitude ri and phase φi: zi(t) =
ri(t)eıφi(t). The coupled input xi(t) =

∑n
j6=i cijzj can be represented

in polar formaswell, say, by Fi(t)eıθi(t)where Fi and θi represent the
amplitude and phase, respectively. This polar representation of the
model allows for the independent study of amplitude and phase
dynamics, and makes the meaning of the parameters explicit.

ṙi = ri(αi + βir2i )+ Fi cos(φi − θi)+ O(
√
ε)

φ̇i = ωi + δir2i −
Fi
ri
sin(φi − θi)+ O(

√
ε).

(4)

2.1. Neural oscillator network with input

Because of their theoretical and practical importance, we want
to study nonlinear oscillator networks under the influence of
complex acoustic stimuli. When external input (ρui(t), ρvi(t)) ∈

R2 is specified in the original system as shown in Eq. (5) then the
transformative procedure employed to obtain the normal formalso
transforms the external input.

u̇i = fi(ui, vi, λ)+ εpi(u1, v1, . . . , un, vn, ρui(t), ε)
v̇i = gi(ui, vi, λ)+ εqi(u1, v1, . . . , un, vn, ρvi(t), ε).

(5)

This transformation leads to significant complexities in deriving
a canonical model. For example, the expressions representing
coupling coefficients can involve limits of integrals that are not
necessarily convergent, or other complex expressions ([1] Thm.
5.10 p. 176). Moreover, if the input is resonant with the oscillators’
natural frequencies, the canonical model may be difficult or
impossible to derive. Due to such complexities, known methods
for deriving canonical models cannot be applied.
Here we consider a different approach, taking into account

the fact that canonical models are generic models for a system’s
local dynamics about one of its attractors. In this paradigm, the
canonical model for a system without external input is considered
as the fundamental model representing the intrinsic dynamics of
a system. This essentially models a system at one of its behavioral
modes. The generic mode of the system and its resonant behavior
to input is precisely the case we are interested in as it corresponds
to important physical situations (e.g., [5,13]). Thus, Eq. (2) becomes
the fundamental model of interest, and additive external input
s(t) ∈ C to oscillator zi can be included in the coupling term xi(t)
as follows.

xi(t) = s(t)+
n∑
j6=i

cijzj. (6)

Next, we consider the case in which a network of neural os-
cillators can have different natural frequencies, perhaps spanning
several orders of magnitude. In this case, intrinsic oscillator fre-
quencies do not need to be ε-close. Such freedom makes the anal-
ysis of such systems more difficult, but the dynamics are more
interesting in terms of new behaviors. We then consider an exter-
nal input whose frequency content is not known a priori. We fully
expand the nonlinearities and resonances contained in the higher
order terms h.o.t . of Eq. (2), to incorporate the responses to an in-
put of unknown frequency. We then compare the response of the
canonical model to the input with that of a particular neural oscil-
lator model.

3. A fully expanded canonical model for a single neural
oscillator with an input

In this section we derive a fully expanded canonical model
corresponding to the dynamical system Eq. (1) by continuing the
expansion of higher order terms (h.o.t.) of the normal form near
an Andronov–Hopf bifurcation. Higher order terms of the normal
form are necessary to capture the response of an oscillator to
an input that is not close to its natural frequency. We employ
the linear relationship, or resonance, given by Eq. (A.2) in terms
of the system’s eigenvalues. Note that near the Andronov–Hopf
bifurcation, the canonical oscillator frequencies {ω1, . . . , ωn} are
absolute values of the eigenvalues of the system represented by
Eq. (1) (see [1,5]). In this case, the resonance relationship becomes:

ωres = n1ω1 + · · · + nmωn
where {m, n} ⊂ Z+, res ∈ {n1, . . . , nm} ⊂ Z+.

(7)

This relationship leads to resonant monomials, which correspond
to resonances among the eigenvalues of the original system
that cannot be eliminated from the normal form [1]. Resonant
monomials capture harmonics, subharmonics, and higher order
combinations of the input frequencies. For example, we can
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expand the normal form for a pair of canonical oscillators having
frequencies related by an integer ratio, in terms of resonant
monomials (see Appendix A). If the pair of oscillators has
frequencies satisfying the resonant relationship ω1 = 2ω2, then
we have

ż1 = z1(a1 + b1|z1|2)+
√
εc12z22 + O(ε)

ż2 = z2(a2 + b2|z2|2)+
√
εc21z1z̄2 + O(ε)

(8)

and for a pair of oscillators with resonance ω1 = 3ω2,

ż1 = z1(a1 + b1|z1|2 + εd1|z1|4)+ εc12z32 + O(ε
√
ε)

ż2 = z2(a2 + b2|z2|2 + εd2|z2|4)+ εc21z1z̄22 + O(ε
√
ε).

(9)

The above analysis can be carried out for pairs of canonical
oscillators with any resonant relationship between their natural
frequencies.1 The normal form analysis retains only the resonant
monomials by which z2 will have an effect on the dynamics of
z1 and vice versa, and eliminates all non-resonant higher-order
terms.
Now consider the canonical oscillators, z ∈ C and x ∈ C,

where the frequency of z is known but the frequency of x is
unknown. In this case the above approach is not possible, because
we do not know the relationship among the eigenvalues, therefore
we do not know which monomials to retain and which can be
eliminated. However if we retain all monomials, by including the
full expansions of all nonlinearities stemming from normal form
analysis (e.g., see [1–3]), then xwill have the appropriate effect on
the dynamics of z – regardless of its frequency content – in the
resulting model.
This leads to an expanded canonical oscillator model (e.g.,

Eq. (10)) for the nonlinear neural oscillator z under the influence
of input x. In the expandedmodel, the resonant terms (RT ) include
all monomials obtained via the relation Eq. (A.2), given by the
Poincaré–Dulac theorem (see Appendix A). Including all monomials
in RT allows the model to respond appropriately to an external
stimulus, regardless of frequency, because only themonomials that
are resonant with the stimulus will have a significant effect on the
oscillator’s dynamics in the long term.

ż = z(a+ b1|z|2 + b2ε|z|4 + b3ε2|z|6

+ b4ε3|z|8 + · · ·)+ RT . (10)

We can now define a network of n expanded canonical
oscillators zi, with an input xi(t) for each oscillator zi, i = 1, . . . , n
as a function of an external stimulus s(t) ∈ C. The interaction
between the network oscillatorsmay also be incorporated through
the input, with the definition of an appropriate RT. In other words,

xi(t) = s(t)+
n∑
j6=i

cijzj. (11)

It is possible to derive a general expansion of RT that captures
the responses to a complex-valued, multi-frequency input. In this
article, we consider a somewhat simpler expansion of RT for a real-
valued, sinusoidal external stimulus of unknown frequency.

RT = x+
√
εxz̄ + εxz̄2 + ε

√
εxz̄3 + · · ·

+
√
εx2 + εx2z̄ + ε

√
εx2z̄2 + ε2x2z̄3 + · · ·

+ εx3 + ε
√
εx3z̄ + ε2x3z̄2 + ε2

√
εx3z̄3 + · · ·

+ ε
√
εx4 + ε2x4z̄ + ε2

√
εx4z̄2 + ε3x4z̄3 + · · ·

= (x+
√
εx2 + εx3 + ε

√
εx4 + · · ·)

× (1+
√
εz̄ + εz̄2 + ε

√
εz̄3 + · · ·). (12)

1 Note that aswe expand the higher order terms,we also expand the compressive
nonlinearities corresponding to the functions fi and gi in Eq. (1) (e.g., the sigmoid
function S in Eq. (18), Section 4).

Given this definition of RT , we do not need to knowwhether the
input frequency is resonantwith the eigenfrequency of any specific
oscillator because only thosemonomials that are resonantwith the
eigenfrequency of zi will affect its behavior in the long term.
Eqs. (10) and (12) both contain infinite geometric series that

converge when |z| < 1/
√
ε and |x| < 1/

√
ε. Thus, the

choice of ε constrains both the magnitude of the input and the
magnitude of the oscillation. Moreover, under certain conditions
on the coefficients of the full expansion in Eq. (10), the oscillatory
dynamics will follow well known cases. For instance, if b1 = b
and bk = d, k ∈ {2, 3, 4, 5, . . .} then Andronov–Hopf and Bautin
(a.k.a. generalized Hopf) bifurcations are possible [2,24,19,20]. In
both cases the dynamics is oscillatory, which is the regime of
interest since we are concerned with modeling neural oscillators.2
Using these ideas, we focus on writing a closed form expression
for Eq. (10) which can exhibit Andronov–Hopf and generalized
Andronov–Hopf bifurcations. First, rewrite Eq. (10) as:

ż = z(a+ b|z|2)+ dz(ε|z|4 + ε2|z|6 + ε3|z|8 + · · ·)+ RT . (13)

Notice the convergence of the geometric series obtained from
the nonlinear terms:

ε|z|4 + ε2|z|6 + ε3|z|8 + · · · = ε|z|4(1+ ε|z|2 + ε2|z|4 + · · ·)

= ε|z|4
∞∑
k=0

(ε|z|2)k =
ε|z|4

1− ε|z|2
,

|ε|z|2| < 1 H⇒ |z| <
√
1/ε.

Next, we simplify RT by factoring x from the first series and
writing the two resulting series as geometric serieswhich converge
when |

√
εx| < 1 and |

√
εz̄| < 1. The restriction on the amplitude

of x emphasizes that the input to the oscillator cannot be arbitrarily
large, it is constrained by ε as is the amplitude of z.

RT = x
∞∑
k=0

(
√
εx)k

∞∑
k=0

(
√
εz̄)k =

x
1−
√
εx
·

1
1−
√
εz̄

(14)

|x| <
√
1/ε, |z| <

√
1/ε.

Combining these results we can write a closed form equation
for the canonical neural oscillator with an input (Eq. (10))3 as:

ż = z
(
a+ b|z|2 +

dε|z|4

1− ε|z|2

)
+

x
1−
√
εx
·

1
1−
√
εz̄

(15)

|x| <
√
1/ε, |z| <

√
1/ε.

Note that if we apply normal form analysis to a network of two
oscillators of the kind defined by Eq. (15), with a known frequency
relationship, we can obtain normal forms such as Eqs. (8) and (9).
We can write Eq. (15) in polar form by using polar representa-

tions for x and z.

x = Feıθ , z = reıφ H⇒ z̄ = re−ıφ, ż = eıφ
(
ṙ + ırφ̇

)
.

Also let:

a = α + ıω, b = β1 + ıδ1,
d = β2 + ıδ2, {α, ω, β1, β2, δ1, δ2, F , r, θ, φ} ⊂ R.

By substituting into Eq. (15), using Euler’s formula

reıθ = r(cos(θ)+ ı sin(θ)),

2 Clearly, there are other relationships among the coefficients bk of Eq. (10) for
which we can obtain closed form expressions, as well as those that do not lead to
closed form expressions. One such generalization is explored in Appendix B.
3 Eq. (B.4) in Appendix B is a generalization of Eq. (15).
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Fig. 1. Schematic of a neural oscillator: The variables u and v represent the
dynamics of coupled excitatory and inhibitory neuron populations. The various
arrows illustrate the input, output, excitatory, and inhibitory flows of information.
Adapted from [1].

and equating real and imaginary parts of the left and right hand
sides of the equationwe obtain the phase and amplitude equations
(Eqs. (16) and (17)) of the canonical neural oscillator with a natural
frequency ω and an input x. This completes our goal of obtaining a
fully expanded canonical model of a neural oscillator with an input
which we use in the next section to construct a GFNN.

ṙ = r
(
α + β1r2 +

β2εr4

1− εr2

)
+
F(εFr + cos(φ − θ))−

√
ε(F cosφ + r cos θ)

(1+ εF 2 − 2F
√
ε cos θ)(1+ εr2 − 2r

√
ε cosφ)

(16)

φ̇ = ω + δ1r2 +
δ2εr4

1− εr2

+
F(sin(θ − φ)+

√
ε(F sinφ − r sin θ))

(1+ εF 2 − 2F
√
ε cos θ)(1+ εr2 − 2r

√
ε cosφ)r

. (17)

4. Gradient frequency networks of neural oscillators

In this section, we consider a model of nonlinear signal pro-
cessing based on 1-dimensional networks of nonlinear oscillators,
tuned to different natural frequencies. Such networks are concep-
tually similar to banks of band-pass filters, except that the resonat-
ing units are nonlinear rather than linear. The frequencies of the
oscillators in the network are chosen based on human auditory
physiology, and the oscillators are organized by their natural fre-
quency, from the lowest to the highest, and stimulatedwith a time-
varying acoustic signal. We refer to this type of network as a gradi-
ent frequency neural oscillator network, or GFNN for short. GFNNs
have relevance to theories of active cochlear responses [12,13],
central auditory physiology [25], and pitch perception [16].
One model for neural oscillation is the Wilson–Cowan [26]

system, describing the dynamics of excitatory (u) and inhibitory
(v) neural populations as illustrated in Fig. 1. We can write the
equation for a single Wilson–Cowan oscillator responding to an
external input as follows:

u̇ = −u+ S(ρu + au− bv + s(t))
v̇ = −v + S(ρv + cu− dv).

(18)

In Eq. (18), {a, b, c, d, u, v, ρu, ρv} ⊂ R, S is a sigmoid function,
e.g., S(y) = 1

1+e−y , S(−∞) = 0, S(∞) = 1, and ρu, ρv are
bifurcation parameters. s(t) represents an external input, which
in this example is real valued and affects only the excitatory
population. The Wilson–Cowan system given by Eq. (18) with
s(t) = 0 is an instance of the class of systems represented by
Eq. (1), whereas with s(t) 6= 0 it is an instance of Eq. (19).

We can define a GFNN with an external input (Eq. (19)) as a
collection ofnWilson–Cowanoscillatorswith differing frequencies
ωi = 2π/τi, i = 1, . . . , n forming a gradient whose order satisfies
ω1 6 ω2 6 · · · 6 ωn. For this example, the other parameters
were set to: a = 10, b = 10, c = 8.6095, d = −1.1429, ρu =
−2.3486, ρv = −4.2411, ε = 0.4.

τiu̇i = fi(ui, vi, λ)+ εpi(u1, v1, . . . , un, vn, s(t), ε)
τiv̇i = gi(ui, vi, λ)+ εqi(u1, v1, . . . , un, vn, ε).

(19)

We then specify a corresponding canonical GFNN (Eq. (20))
as a collection of n canonical oscillators with frequencies, ωi =
2π/τi, i = 1, . . . , n, corresponding to those of Eq. (19).

τiżi = zi

(
ai + bi|zi|2 +

diε|zi|4

1− ε|zi|2

)
+

xi
1−
√
εxi
·

1
1−
√
εz̄i

xi(t) = s(t), |xi| <
√
1/ε, |zi| <

√
1/ε.

(20)

Near the Andronov–Hopf bifurcation, we expect the two
networks to respond similarly to an external stimulus. This
is illustrated in Fig. 2 which compares the dynamics of a
Wilson–Cowan GFNN (using Eq. (18)) to the corresponding
canonical GFNN (Eq. (20)).
In this simulation, the network parameters are set such that

each oscillator is close to the Andronov–Hopf bifurcation and such
that the oscillators will relax to their respective fixed points if
the total input they receive is not sufficient to drive them into
the oscillatory critical regime [12]. Both networks respond to a
high-amplitude sinusoidal stimulus s(t) = F sin(2π t), F = 0.30
which is fed to all oscillators in both networks. The complex valued
parameters of Eq. (20) were specified as follows where ωi is the
natural frequency of the ith oscillator:

ai = αi + ıωi, bi = β1i + ıδ1i ,
di = β2i + ıδ2i , 0.125 6 τi 6 8
{αi, ωi, β1i , β2i , δ1i , δ2i} ⊂ R

and were set to:

ai = 0+ ı2π, bi = −10+ ı(−9), di = −10+ ı(−9).

Fig. 2 illustrates that the Wilson–Cowan GFNN and its corre-
sponding canonical GFNN have qualitatively similar dynamics in
response to a sinusoidal input. In this simulation there was no
internal coupling (i.e., cij = 0) among the network’s oscillators;
this focuses the response of the networks to the external input.
Both networks respond not only at the stimulus frequency, but
also at harmonics (2:1, 3:1) and subharmonics (1:2) of this fre-
quency. The frequency response of the two models is highly cor-
related (r2 = 0.946). We have also observed similar responses in
the two networks to other types of external stimuli, and ongoing
work is considering the responses to external stimuli and connec-
tivity in detail. In futurework, we plan to study the canonical GFNN
as a generic system for nonlinear time-frequency transformation.

5. Conclusion

We have derived a canonical model (Eqs. (15)–(17) and (B.4))
of neural oscillation for heterogenous frequency neural networks
with an external input. Our approach treats canonical models
as being fundamental and proceeds from that level. Within the
appropriate constraints the canonical model dynamics is expected
to be topologically equivalent to the local dynamics of the original
neural network. Formal proof of this theoretical hypothesis is
left for future work. However, we demonstrated that a gradient-
frequency neural oscillator network and a corresponding canonical
GFNN yielded qualitatively similar dynamics in a numerical
simulation with an external stimulus. A comprehensive analysis
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Fig. 2. Time frequency transformation by a GFNN: Dynamics of a Wilson–Cowan GFNN and a corresponding canonical GFNN under the influence of a sinusoidal input. Each
network consists of 360 oscillators arrayed along a logarithmic frequency gradient of 6 octaves with 60 oscillators per octave. The external input s(t) = F sin(ω0t), i =
1, . . . , 360, F = 0.30, ω0 = 2π is the same for all oscillators in both networks. The top panels show oscillator amplitude (gray level) as a function of time and frequency for
the Wilson–Cowan and canonical models, respectively. Oscillations arise at frequencies that are not present in the stimulus, due to the nonlinear coupling, captured in the
higher ordermonomials of RT . The strongest response is found at the stimulus frequency, but oscillations are also observed at harmonics (e.g., 2:1 and 3:1) and subharmonics
(e.g., 1:2) of the stimulus frequency. The bottom panel compares the response amplitude (averaged over the last 5 stimulus cycles) for theWilson–Cowanmodel (black line)
and the canonical model (gray line). The average amplitudes are highly correlated (r2 = 0.946).

of canonical GFNNs under the influence of external stimulation is
currently underway. We are studying the construction of resonant
terms and the effect of the connectivity structures (e.g., diffusive
nearest neighbor interaction) on system dynamics. We expect
fully expanded canonical models to play an important role in our
developing understanding of auditory system’s function, including
nonlinear and multifrequency interactions in the cochlea and
central auditory nervous system. Experimental evidence suggests
that the auditory system performs nonlinear time-frequency
transformations of acoustic stimuli. Because such canonicalmodels
enable the study of generic properties of nonlinear time-frequency
transformation, they are of potential significance in the study of
auditory physiology and psychophysics.
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Appendix A. Normal forms and canonical models

Here we briefly consider the well established Poincaré–Dulac
normal form theory (see, e.g., [1,19,27]) which can be used to
reduce a class of dynamical systems to a normal form which is
a simplified form for the local dynamics of the original system
near one of its attractors (see, e.g., [1,3,28,29,2,22,30–36]). The
reduction is typically accomplished via a near identity change of
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variables of a set of equations representing a class of dynamical
systems. To this end, let the system described by Eq. (A.1) be a
smooth dynamical system.

ẋ = F(x) = Ax+ N(x), x = (x1, . . . , xm) ∈ Rm. (A.1)

Assume without loss of generality that Eq. (A.1) has x = 0
as a fixed point, i.e., F(x = 0) = 0. A is the Jacobian matrix
of the system evaluated at x = 0, i.e., A = DxF (where D =
the Differentiation Operator) with the corresponding eigenvalues
λ1, . . . , λm and eigenvectors vi ∈ Rm, i = 1, . . . ,m. The vector
function N(x) = F(x)−Ax represents the nonlinear terms of F(x).
For the sake of simplicity and without loss of generality, assume
that A is in Jordan Normal Form. Then, each polynomial relationship
of the form

λi = n1λ1 + · · · + nmλm; i = 1, . . . ,m;

{n1, . . . , nm} ⊂ Z+ (A.2)

such that∑
nk > 2, k ∈ {1, . . . ,m}

is said to be a resonance or resonant relationship of the system
(Eq. (A.1)) in terms of the eigenvalues of A. Each resonance has an
associated resonant monomial of the form viX

n1
1 . . . X

nm
m . By the

Poincaré–Dulac theorem Eq. (A.1) can be reduced to a simpler form
(Eq. (A.3))

ẏ = Ay+ P (y) (A.3)

via the near identity change of variables:

x = y+ P(y), P(y) = 0, DyP(0) = 0

where P is a vector function of formal power series without
constant and linear terms satisfying the Poisson (or Lie) bracket
operation [3,37,1,2] [Ay, P] = (Dy(Ay))P − (DyP)(Ay). P is
a nonlinear homogeneous polynomial vector function in the
variables X1, . . . , Xm consisting only of resonant monomials of
some fixed degree k. The system represented by Eq. (A.3) is called
a normal form of the system represented by Eq. (A.1). More
generally, Eq. (A.3) is simply called a normal form when the
nonlinear portion of P lies in the complement of the Poisson/Lie
bracket operation of a sum of nonlinear monomials H related to
the Jacobian matrix A, i.e., P (y)

⋂
[A,H] = {0} ([1], pp. 122–124).

The concept of a canonical model is independent from that of
a normal form. However, normal forms can usually be shown to
be canonical models, e.g., for the local dynamics of a dynamical
system. SupposeD is a collection of dynamical systems were each
member is a model, say, of some physical system such as the brain.
Furthermore, assume that there exists a dynamical system, e.g.,
ẋ = f(x) such that any y ∈ D can be transformed into the system
x by a continuous change of variables. Then, the system x is said to
be a canonical model for the family of dynamical systemsD .
The normal forms Eq. (A.3) can be shown to be local canonical

models for the class of models (e.g., Eq. (A.1)) near a bifurcation
point. Hoppensteadt & Izhikevich [1,5] derived such a local
canonical model for a weakly connected neural network (WCNN)
where the frequencies of any given pair of oscillators in the
network are ε-close. However, in this manuscript we are mainly
interested in the case when the frequencies of the oscillators are
not necessarily ε-close and have arbitrary resonances.

Appendix B. Generalized fully expanded canonical model

Here, we derive a closed form expression for ż in Eq. (10) similar
to Eq. (15) based on specific assumptions on the coefficients bk
of Eq. (10). This generalized equation will capture more of the

dynamic effects caused by the nonlinearities and the higher order
resonant terms present in Eq. (10). Without loss of generality,
assume:

ε > 0, ε ∈ R
bk ∈ C, k ∈ {1, . . . , p}, p > 1, p ∈ Z+

bk = bp+1 ∈ C, k ∈ {p+ 2, p+ 3, . . .}.

Following the pattern of steps leading to Eq. (15) rewrite Eq. (10)
as:

ż = z(a+ b1|z|2 + b2ε|z|4 + b3ε2|z|6 + b4ε3|z|8 + · · ·)+ RT
ż = az + z(b1|z|2 + b2ε|z|4 + · · · + bpεp−1|z|2p)

+ z(bp+1εp|z|2(p+1) + bp+2εp+1|z|2(p+2) + · · ·)+ RT

ż = az + z
p−1∑
k=0

bk+1εk|z|2(k+1) + zbp+1
∞∑
k=p

εk|z|2(k+1) + RT .

Note that for k = p, εp|z|2(p+1) is a factor of
∑
∞

k=p ε
k
|z|2(k+1) so we

can write:

ż = az + z
p−1∑
k=0

bk+1εk|z|2(k+1)

+ zbp+1εp|z|2(p+1)
∞∑
k=p

εk−p|z|2(k−p) + RT

Let m = k − p which implies that for k = p,m = 0 and for
k = ∞,m = ∞− p = ∞ thus, we can write:

ż = z

(
a+

p−1∑
k=0

bk+1εk|z|2(k+1)
)

+ zbp+1εp|z|2(p+1)
∞∑
m=0

(ε|z|2)m + RT

∑
∞

m=0(ε|z|
2)m is a geometric series with radius of convergence:

|ε|z |2 | < 1 H⇒ |z| <
√
1/ε.

Recalling the result for RT from Section 3 we obtain the general
case for the canonical neural oscillator with an input:

ż = z

(
a+

(
p−1∑
k=0

bk+1εk|z|2(k+1)
)
+
bp+1εp|z|2(p+1)

1− ε|z|2

)

+
x

1−
√
εx
·

1
1−
√
εz̄

when |z| <
√
1/ε, |x| <

√
1/ε, p ∈ Z+ and p > 1. (B.4)

Notice that if we set p = 1 in Eq. (B.4) we obtain Eq. (15) where
b = b1 and d = b2. Eq. (B.4) can also be written in polar form as
was done for Eq. (15).
To summarize the above procedure, in general, we choose a fi-

nite number of the coefficients bk from Eq. (10) with the constraint
that the remaining terms containing bk’s form a convergent series.
Clearly, this will yield a closed form expression for ż.
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