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Integration and segregation in auditory streaming
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Abstract

We aim to capture the perceptual dynamics of auditory streaming using a neurally inspired model of auditory processing.
Traditional approaches view streaming as a competition of streams, realized within a tonotopically organized neural network. In
contrast, we view streaming to be a dynamic integration process which resides at locations other than the sensory specific neural
subsystems. This process finds its realization in the synchronization of neural ensembles or in the existence of informational
convergence zones. Our approach uses two interacting dynamical systems, in which the first system responds to incoming
acoustic stimuli and transforms them into a spatiotemporal neural field dynamics. The second system is a classification system
coupled to the neural field and evolves to a stationary state. These states are identified with a single perceptual stream or multiple
streams. Several results in human perception are modelled including temporal coherence and fission boundaries [L.P.A.S. van
Noorden, Temporal coherence in the perception of tone sequences, Ph.D. Thesis, Eindhoven University of Technology, The
Netherlands, 1975], and crossing of motions [A.S. Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound,
MIT Press, 1990]. Our model predicts phenomena such as the existence of two streams with the same pitch, which cannot be
explained by the traditional stream competition models. An experimental study is performed to provide proof of existence of
this phenomenon. The model elucidates possible mechanisms that may underlie perceptual phenomena.
c© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Intuitively, auditory streaming or stream segregation is like listening to bass and soprano vocalists singing
simultaneously. Although the two voices overlap in time, they clearly form two distinct perceptual events.
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Fig. 1. A frequency–time plot of input tone sequences where 1 f is the frequency difference and IOI is the stimulus Inter Onset Interval.
a: small frequency differences with one perceptual stream indicated by the solid lines. b: large frequency differences with the percept of two
streams.

In the laboratory, a similar effect can be created using sequences of tones. In a typical streaming experiment,
two sequences are created using sets of high and low tones as illustrated in Fig. 1. Sequences vary in presentation
rate and the frequency difference between the tones. The basic finding (see, e.g., [1]) is as follows. (1) When
the frequency separation is relatively small and/or the rate is relatively slow, listeners perceive a single integrated
melody (or stream) and can accurately report the ordering of the tones (see Fig. 1a). (2) When the frequency
separation is relatively large and/or the rate relatively fast, people clearly perceive two auditory streams, one with
higher pitch than the other (see Fig. 1b). In this case they are able to attend selectively to one or the other stream
with great efficiency and they are unable to hear the two tone sequences as integrated. For example, when listeners
cannot integrate, they cannot report the relative order of individual events between the two streams.

During streaming experiments, van Noorden manipulated the initial perception of the listeners using the
following strategy [2]. In one scenario he began with an integrated pattern and asked these listeners to follow
the trill rhythm [3] formed by alternating sequences of high and low tones and to “hold on to this rhythm for as
long as possible”. In other words, the subjects perceived one stream of alternating tones. In another complementary
scenario, he began with perceptually segregated melodies and asked the subjects to “focus attention selectively
on the string of low tones”. In each of the two scenarios, van Noorden [2] manipulated the frequency difference
(1 f ) and the inter-onset interval (IOI), toward the other sequence type (integrated or segregated). In essence, the
initial condition is chosen such that the subject’s percept is monostable, i.e., there is no switching of percept. van
Noorden [2] found three main phenomena. (1) There is a frequency–time boundary (known as the Fission Boundary
(FB)) beneath which all sequences are heard as integrated, regardless of instructions. (2) There is a frequency–time
boundary (known as the Temporal Coherence Boundary (TCB)) above which all sequences are heard as segregated,
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Fig. 2. Partial illustration of van Noorden’s bifurcation diagram as a function of the frequency difference1 f and the IOI. The parameter space
is partitioned into three regimes, one region with the percept one stream, another region with the percept two streams and a region in between
which permits both.

regardless of instructions. (3) Between these two boundaries there exists a bistable region in which a sequence can
be heard as either integrated or segregated depending upon instructions. Hysteresis phenomena are observed when
traversing the bistable regime from either the Fission Boundary or Temporal Coherence Boundary. Refer to Fig. 2
for an illustration of van Noorden’s results.

Numerous psychophysical studies investigating the stream segregation phenomenon (e.g., [4,1,2,5–8]) show its
robustness and hint at its fundamental relationship to other integration and segregation phenomena in perception.
Related studies have been conducted in humans (e.g., [3,2,4,1,9–13]), monkeys [14], and bats [15], and several
theories have been proposed to account for the phenomenon. In Gestalt theory, streaming is viewed as arising
from fundamental principles inherent in the input patterns, such as proximity (of the tone frequencies), similarity,
and spatiotemporal cohesion [16–23]. Bregman [1] appealed to Gestalt principles in explaining auditory grouping
mechanisms, and auditory scene analysis in general, but recruited other explanatory concepts such as integrative
schemas when Gestalt principles fail. Other general theories invoked to explain auditory streaming include filter, or
channel models, e.g., [5], that hold that streaming is based on selective attention to a single perceptual dimension
such as pitch. However, channel models fail to accommodate numerous streaming effects that are dependent on
relationships among tones, such as quality, higher-order frequency relationships [24] and timbre [25]. Others
(e.g., [26,2]) propose that listeners attend to frequency motions in perceiving auditory streams. In fact, some
researchers claim that Gestalt principles are generally inadequate explanations for entire classes of acoustic and
visual grouping, for example in speech perception [27] and vision [20]. Although in nature there are many kinds of
gestalten, organized patterns of perception or behavior, the means by which those patterns arise is as yet unclear.

Complementary to the above psychophysiological approaches, there are currently two predominant
neurophysiological theories of how the nervous system integrates environmental signals. The first theory is referred
to as the binding theory and assumes that an integrated percept arises when activity in cortical areas becomes
synchronized [28]. The second theory is grounded in the field of multisensory integration and assumes the existence
of informational convergence zones. These convergence zones are made of cortical and subcortical networks such
as the network consisting of the superior colliculi, the inferior parietal areas, and the insula which is activated
during the integration of speech and vision [29] among other behaviors. Both sources of neurophysiological
evidence suggest that activations of larger networks are relevant for perceptual integration. In particular, they
also involve neural areas with no known tonotopic architecture. Injuries of these secondary non-tonotopically
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organized areas typically result in failure of integration of the environmental information, despite proper signal
processing in the tonotopically organized primary areas. Given this neurophysiological evidence, we wish to
explore if the architecture suggested by neurophysiology can shed light on the mechanism of streaming. We propose
an architecture of two subnetworks, of which the first is tonotopically organized and the second is not. Together
the two subnetworks achieve the integration of environmental signals. We will refer to models of this architecture
as stream classification models.

For proof of concept, we propose a specific minimal realization of a stream classification model employing two
self-organized systems. In the first system, a neural activity distribution is defined over space and disperses over
time. This definition essentially has been referred to as a neural field [30–33]. We assume that the neural field is
tonotopically organized such that the frequency of the acoustic stimulus maps onto a location in the neural space.
The second non-tonotopically organized system classifies the resulting spatiotemporal neural field dynamics. This
classification process is not just a measurement (else the application of a simple measure to the neural field would
suffice) but is itself a dynamic process. In fact, bistability and hysteresis are properties of the classification process
rather than properties of the neural field dynamics.

The dynamics of the classification system is motivated from models used in pattern recognition which
themselves were inspired by simplified principles of neural functioning [34–37]. In the present case, categories
available in the classification system correspond to the perception of either one stream or two. This is in contrast
to a variety of models which implement the competition of individual streams as a mechanism for stream
formation rather than the competition of classification patterns. Such stream competition models are composed
of subnetworks each representing the material substrate of a stream. When input signals are provided to the
subnetworks, they compete for the energy in the input signals until one, two or even more streams emerge as
final states of the competition. These streams will all differ in pitch, because the underlying subnetworks have
a winner-takes-all architecture and make it impossible to have stationary activity at the same pitch. Examples of
stream competition networks are the cochlear models and filter banks [38,39] and the models based on Adaptive
Resonance Theory [40–43].

By construction, the stream competition models cannot explain phenomena such as the existence of two
streams with the same pitch [44] or duplex perception in stream formation [45]. Both phenomena, however, have
recently found entry into the streaming literature. As a proof of existence of multiple streams with the same pitch
but different amplitude, as well as duplex function of tonal elements belonging to two streams simultaneously,
we provide additional experimental results that unambiguously demonstrate multiple streams. We implement
the phenomenon computationally within the stream classification model introduced here and establish evidence
for its capability of multiple stream segregation for same-pitched streams. The additional phenomena against
which we test our model are the streaming phenomena established in van Noorden’s bifurcation diagram and the
“crossing scales” phenomenon or “bouncing” percept [1] in which a sequence of interleaved rising and falling tone
trajectories are perceived as either “bouncing” or “crossing” when the frequencies of the two trajectories become
relatively close. Whether bouncing or crossing is perceived is dependent on the frequency–time relationships
among the tones.

In this article, we compare stream competition and stream classification models conceptually in Section 2 in
order to clarify the underlying mechanism for perceptual integration. Here we take a minimalist approach in that
we consider the most basic differences of the integration mechanisms in the individual models. In Section 3 we
develop a specific realization of a stream classification model and in Section 4 we test it against a variety of well-
documented phenomena.

2. Models for stream formation

It is often quite difficult to uncover the assumptions underlying dynamic models that attempt to explain
streaming phenomena. In part, this is due to the implementation of many processes (such as filter banks, envelope
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functions, and pitch versus frequency discrimination) which are not essential for the stream formation process
per se, but are obviously necessary to ensure proper functioning of the model for realistic stimuli. For example,
recent models of auditory streaming have incorporated comprehensive models of auditory perceptual processing,
including cochlear filtering, binaural processing and pitch perception (e.g., [46,47]). For conceptual clarity, we
have opted for a simpler pitch–time input representation that assumes a certain amount of pre-preprocessing of
acoustic signals. Although extensive modeling of earlier auditory processes may facilitate simulation for certain
types of input signals, our simplification allows us to focus solely on those aspect of acoustic stimulation that
are most relevant to the current proposal. Future modeling efforts will incorporate more comprehensive auditory
modeling. At this stage, our strategy is simply to reduce the most common models, stream competition and stream
classification, to the minimum needed to generate the main streaming phenomena for the simplest stimuli. The goal
is to uncover the most basic assumptions of each model and hence their conceptual basis.

As illustrated in Fig. 1, stimulus patterns have spatial and temporal features and each model must capture or
code these features. We associate the formation of a percept with the evolution of some neural activity ψ(x, t),
where x denotes a location in the neural space, Γ , and t an arbitrary time point. In particular, we assume that the
neural space Γ is tonotopically organized. At this stage, for the purpose of a conceptual discussion, it is sufficient
to state that the neural activity ψ(x, t) processes the spectral stimulus features and varies as a function of time. In
what follows we discuss the two major conceptualizations of how percepts form from neural activations. In the first
conceptualization, the percept is realized as a projection of the neural activity ψ(x, t) on a perceptual pattern vi (x).
For example, if v1(x) is the pattern corresponding to the perception of one stream, then it has a non-zero component
at a location x1 and is zero otherwise. If v2(x) is the pattern corresponding to the perception of two streams, then
it has non-zero components at x1 and x2 and is zero otherwise. The projections of ψ(x, t) onto these patterns
are in competition with each other. Most models fall in this class [41,39,48] and are stream competition models.
In the second conceptualization, the percept is not inherent in the processing of the neural activity ψ(x, t), but
rather realized by the neural activation in a different non-tonotopically organized cortical area. The latter activation
may represent the onset of synchronization or the emergence of an activation pattern. This is the basis of stream
classification models.

2.1. Stream competition

An input signal p(x, t) : R2
→ R codes the spectral components in the space x and the temporal component

in the time t . It is introduced into a neural network with n subnetworks and its corresponding activations
ψ(x, t) = (ψ1(x, t), ψ2(x, t), . . . , ψn(x, t)), where ψi (x, t) : R2

→ Rm . The index m denotes the dimension
of an individual network node at location x .

Each subnetwork represents a stream which is in competition with the other streams. The coupling between
the streams is of “winner-takes-all” type for a given frequency, or equivalently, location x . This type of coupling is
generally accomplished by local excitation and global inhibition [41,39,49]. As a consequence, only one stream will
emerge as the winner in the competition for an activation at a particular location x , though there may be transients
during which two streams have activations at the same location x . See Fig. 3, which illustrates the model structure
for two subnetworks, that is, two streams. The generic equations governing the dynamics of stream competition
are of the following form:

ψ̇i (x, t) = Gi (ψi (x, t))−

∑
j

Ci jψ j (x, t)+ Mp(x, t) (1)

where Gi is a nonlinear functional with spatial operators describing the local dynamics at each network node,
Ci j > 0 is a constant and quantifies the coupling between individual streams and M is a constant m × 1 matrix
introducing the input uniformly to each node. The competition among streams is established entirely through the
inhibitory coupling matrix Ci j . The streams compete for the energy in the input signals at the same location x and
will mutually inhibit each other, resulting in the exclusive activation of one stream and deactivation of all other
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Fig. 3. Stream competition model structure.

streams. As a consequence, an activity distribution vi (x) emerges for the i-th stream with amplitude si (t) across
the neural space x . All the information about the perceptual pattern is contained in the set of streams {si (t)vi (x)}
being activated.

The models suggested by Grossberg and colleagues [41,43] and by McCabe and Denham [39] can both be
written in the form of Eq. (1). Obviously, there is a large amount of detail implemented in these models to
make them function for realistic stimuli. In particular, the ARTSTREAM model of Grossberg and colleagues is
a sophisticated model incorporating mechanisms for pitch formation and symmetry breaking of the inhibitory
coupling among the streams to induce a stream formation hierarchy. These technical aspects are crucial for proper
functioning but not conceptually.

2.2. Stream classification

This approach to stream segregation assumes a separate component with the activity y(t) = (· · · yi (t) · · ·)
which is responsible for the integration (or classification) of the spatiotemporally dispersed input signal ψ(x, t).
The activation of the i-th component, yi (t), represents the formation of the percept i and may be realized in two
ways: (1) by means of a separate area or network corresponding to an informational convergence zone; or (2) by
means of a network of areas that can be synchronized as a function of the input signal. In both cases, yi (t) is
activated (via an amplitude increase in the first case or onset of synchrony in the second case) when the i-th percept
is integrated. However, in contrast to the stream competition models, processing of spectral and temporal properties
of the input and percept formation do not occur at the same site. More specifically, the auditory input signal does
not feed directly into the integrating network y(t), but is first spatiotemporally dispersed in an intermediate and
tonotopically organized neural network with activity ψ(x, t). Its dynamics is described via:

ψ̇(x, t) = G(ψ(x, t))+ p(x, t) (2)

where, as before, G is a nonlinear functional with spatial operators describing the local dynamics at each network
node and p(x, t) is the input introduced uniformly to each node. A measure Ii (t) acting on ψ(x, t) is then passed
on to yi (t)

ẏi (t) = gi (yi )−

∑
j 6=i

ci j (yi − y j )+ Ii (t) (3)

where gi is a nonlinear function denoting the intrinsic dynamics of yi (t) and ci j (yi − y j ) is the coupling with the
nonlinear, typically sigmoidal, function ci j . The measure Ii (t) = Ii (ψ(x, t)) is a functional which is introduced
to the i-th component with activity yi (t). Note that yi (t) in a real network is not limited to the activation of a
single node, but may equivalently represent an activity pattern of a network via a simple linear transformation. In
this approach, the neural activation yi (t) corresponds to the strength of a perceptual pattern. By definition, two
perceptual patterns cannot be present at the same time and hence the system described in Eq. (3) justifies a winner-
takes-all dynamics. Here the competition is between perceptual patterns, not streams, which allows the co-existence
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Fig. 4. Stream classification model structure.

of two streams with the same pitch consistent with previous experimental findings by Singh [44]. See Fig. 4 for an
illustration of this model structure.

3. Specific realization of a stream classification model

In the following paragraphs we develop the details of a stream classification model. For proof of concept, we
will establish both networks, the dispersive neural fieldψ(x, t) and the network of competing patterns yi (t), in their
simplest mathematical form, but still sufficiently rich to reproduce a majority of well-known streaming phenomena.

The dynamics of the neural field ψ(x, t) is defined as a spatiotemporal wave equation following the lines of
Jirsa and Haken [32,33], but certainly not limited to this particular choice (see [49–52,31] for related approaches).
Here a continuous sheet of excitatory and inhibitory neural ensembles is connected over short and long distances
via nerve cell fibers represented by an exponentially decaying connectivity function, which relates the neurons’
activity at different locations. Time delays in neural cross talk are caused by the time needed for the neural
activity to propagate from one location to another. The neural activity is generated by the nonlinear sum of the
incoming signals which are weighted by the connection strengths. The nonlinearity characterizes the response
function of a neural ensemble and is typically sigmoidal in character. The neural field activity has the ability to
show spatiotemporal pattern formation in terms of travelling wave fronts, standing waves, and more complicated
spatiotemporal dynamics. Under the assumption of a translationally invariant connectivity function, the dynamics
of the neural field, ψ(x, t), is governed by a partial differential equation [32,33,53] as follows:

ψ̈ + (ω2
0 − ν21)ψ + 2ωψ̇ = ae

(
ω2

0 + ω0
∂

∂t

)
· S(ψ + p)

ψ : R2
→ R p : R2

→ R.
(4)

Here n dots denote the n-th derivative with respect to time, 1 is the Laplacian. ae, ω0, and ν are constants,
S : R → R is a sigmoid function, and p : R2

→ R is the external input or stimulus to the neural sheet. Periodic
boundary conditions, ψ(0, t) = ψ(L , t), t ≥ 0, are used. Other boundary conditions provide identical results,
because the neural field activations are local compared to the entire length L of the cortical sheet. Initial conditions
are chosen to be random. The parameters of the neural field equation are physiologically interpreted as ae = αµρe,
where α is the coefficient of the membrane impulse response, µ is the neural membrane time constant, and ρe
is the space constant of connectivity. The parameter ω0 is defined as ω0 = ν/σ , where ν is the corticocortical
signal propagation velocity and σ is the long range connectivity of fibers. The spatiotemporal characteristics of the
auditory input are represented by p(x, t). The sigmoid function S represents the firing rate of a neural ensemble
and is defined as: S(x) = 2/(1 + e−x )− 1.

The second network is established in terms of the variables yi (t). In the case of the competition of two streams,
there will be only the two perceptual patterns of one-stream with the strength y1(t) and the pattern of two-streams
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Fig. 5. Model architecture. Stimuli in the form of high and low tone sequences are provided to a one-dimensional neural field ψ(x, t). The
resulting neural activity is spatiotemporally integrated and transmitted as the signal I (t) to a classification system y(t).

with the strength y2(t). Due to the mutual exclusion of these patterns, their difference, y = y1 − y2, will either be
y = y1 > 0 or y = y2 < 0 once the dynamics has become stationary. Then the dynamics of y(t)may be written as:

ẏ(t) = ẏ1(t)− ẏ2(t) = g(y1, y2)− c(y)+ I (t) (5)

where g(y1, y2) = g1(y1)− g2(y2), I (t) = I1 − I2 and c(y) = c12(y)− c21(−y).
For simplicity, we choose the dynamics of a node, that is g1 and g2, to be linear. We expand the sigmoidal

coupling function c(y) = c0 + c1 y + c2 y2
+ c3 y3

+ · · · and then write Eq. (5) in a closed form:

ẏ = εy − y3
− I0 + I (t) (6)

where c3 = 1 and ε is a constant that captures all linear contributions. I0 contains all constant contributions,
including the one stemming from a transformation of the quadratic term c2 y2. The functional I (t) is now
specified as:

I (t) =

∫ L

0
h(ψ(x, t))dx (7)

where Ω is a neural activity threshold and h is a rectified function:

h(n) =

{
0, n ≤ Ω
n, n > Ω . (8)

The Eqs. (4), (6) and (7) define the dynamics of a stream classification model in one of its simplest forms. Fig. 5
illustrates the architecture of the model. The neural field is illustrated by the rectangular box showing the neural
activity ψ(x, t) composed of inhibitory and excitatory neurons. The input p(x, t) is provided at locations xi via the
Gaussian localization function e−(x−xi )

2/δi with width
√
δi . The explicit model parameters used in the simulations

are given in Table 1.

4. Results

4.1. van Noorden diagram

To understand van Noorden’s bifurcation diagram as shown in Fig. 2, we parametrize a sequence of consecutive
tones by their frequency difference, 1 f , and their inter-onset interval, IOI. As the neural field evolves, it is



F. Almonte et al. / Physica D 212 (2005) 137–159 145

Table 1
Table of model parameter values

Parameter Value

δ1 0.025
δ2 0.025
v 0.2
σ 0.25
ω0

v
σ

L 6
Ω 0.02
ε 0.6
I0 3

Fig. 6. The stimulus sequences (top) and its resulting neural field dynamics (bottom). The percept of one stream.

integrated across space and time yielding the time-dependent, but scalar, activity I (t) driving the second system.
I (t) represents the relevant “information” from the neural fieldψ as a spatiotemporally integrated activity measure,
which depends on the amount of dispersion over space and time. The greater the dispersion, the greater will be the
value of I (t) at a given time point. Figs. 6 through 8 plot the contour lines of neural field activity over space x
and time t for three situations, that is, one integrated stream (Fig. 6), the bistable regime (Fig. 7) and two separate
streams (Fig. 8).

The final state reached by the second system defined in Eq. (6) with activity y will depend on I (t) and its own
intrinsic dynamics. In Fig. 9 the flow (time derivative) ẏ is plotted as a function of y. The intersections of the flow
with the horizontal axis define the fixed points of y. The curve of the flow is shifted up or down depending on
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Fig. 7. The stimulus sequences (top) and its resulting neural field dynamics (bottom). Bistable regime.

I (t), creating either one positive or one negative fixed point. For an intermediate value of I (t), there is a bistable
regime in which y can assume either one of the fixed points. The negative fixed point is identified with perceiving
one stream and the positive fixed point with perceiving two streams. The time series for y are shown in Fig. 10 for
several different initial conditions of the activity y. After a transient time the activity becomes stationary, displaying
three possible scenarios (see Fig. 10 from top to bottom): one stream only, or the bistable situation, in which either
one integrated stream or two separate streams may be perceived, or finally two streams only. This simulation
highlights the model’s character as a classification model.

For each choice of 1 f and IOI, the model Eqs. (4) and (6) are numerically solved and their stationary states
determined. The results are plotted in the two-dimensional parameter space in Fig. 11. The temporal coherence
boundary (TCB) and the fission boundary (FB) are reproduced in a manner that corresponds strongly to van
Noorden’s [2] results including a bistable region. Note that the exact experimental numerical values at which
the boundaries occur vary from subject to subject and depend on the experimental methods employed [1].

4.2. Crossing scales phenomenon

When two interleaved rising and falling tone sequences as shown in Fig. 12 are presented, then human subjects
report these to be either crossing or bouncing perceptually [54,1]. This phenomenon is known as the “crossing
scales phenomenon”. In particular, the bouncing percept is more often reported than the crossing percept. Similar
phenomena have also been reported in the visual domain [55]. Fig. 12 (a) shows the interleaved rising and falling
tone sequences which serve as input to the neural field. Note that these input sequences change across space
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Fig. 8. The stimulus sequences (top) and its resulting neural field dynamics (bottom). The percept of two streams.

Fig. 9. The flow ẏ of the classification system (plotted as a function of y) is shifted up or down in dependence of I (t). The intersections with
the horizontal axis characterizes stable (full circles) and unstable (empty circle) fixed points of the system. Left (negative) fixed point: one
stream. Right (positive) fixed point: two streams. Three fixed points (two stable, one unstable): bistable regime.
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Fig. 10. For multiple initial conditions the time series of y(t) are plotted for the three regimes, one stream only (top), bistable (middle) and two
streams only (bottom).

(i.e., frequency in this case) and time by construction and can be characterized by the angle θ that they form. It is
computationally more convenient to describe the dynamics of the neural field as a function of the IOI and θ because
the latter captures the dispersive properties of the dynamics more naturally in this particular experimental design.
But also note that when θ remains constant while varying 1 f and the IOI, then the resulting perceptual dynamics
will not change. It is implied that the angle θ is the more relevant perceptual control parameter for the “bouncing
percept” phenomenon. Fig. 12b shows the resulting dynamics of the neural field under the influence of this input.
The corresponding dynamics of the second system, the classification system, is illustrated in Fig. 12c for the
phenomenon of the “crossing percept”. Following the presentation of the input, the perceptual pattern analogous to
the perception of two streams emerges. As the successive input tones get closer in frequency, the positive fixed point
destabilizes and a transition occurs towards the negative fixed point analogous to the perception of a single stream.
As successive tones continue to diverge in frequency, the system returns towards the positive fixed point. Fig. 12c
illustrates the successful formation of the sequence from two-streams to one-stream and back to two-streams. We
identify this sequence with the perception of crossover. Fig. 12d illustrates the complementary phenomenon of the
bouncing percept, which is represented by the failure of y(t) to change its sign, i.e., the percept remains that of
two-streams. After all, during bouncing, perception is always of two non-interacting streams. The transition from
the positive to the negative fixed point is not guaranteed to occur, but depends on the characteristics of the input
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Fig. 11. A partial diagram similar to van Noorden’s bifurcation diagram is obtained numerically from the model and compares favorably with
the experimental results (see Fig. 2).

Fig. 12. The input tone sequences used to form a percept of crossover are shown in a. The resulting contours of neural field activity are plotted
in b, together with the final time series of y(t) shown in c. In this particular case, the classification system y(t) does traverse from the positive
(two streams) to the negative (one stream) fixed point and back. This trajectory is identified with the percept of crossover. In the case of the
bouncing percept the time series of y(t) will not cross the x-axis, as shown in d.

tone sequences (frequency–time relationships, timbre [1], etc.) and the intrinsic dynamics of the two systems and
their interactions. Note that the model also predicts a potential hysteresis effect in that the transition from one
fixed point to the other only occurs when either of the boundaries in the parameter space is crossed. These novel
predictions and the dependence of the dynamics on the angle θ are open to be tested experimentally.

Applying the above identifications of dynamic behavior to stream perception, a bifurcation diagram (see Fig. 13)
can be constructed contrasting the IOI of the tone sequences versus the angle θ that they form at the crossover
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Fig. 13. A bifurcation diagram obtained numerically from the model using crossing tone sequences. The diagram is obtained by varying the
IOI and the angle θ formed by the crossing sequences. Note that below a critical value θc of the angle θ there is always crossover, as defined in
the main text.

point. The control parameters are the angle θ and IOI. All other parameters are fixed, including the tone duration.
The result predicts two regions separated by a temporal coherence boundary (TCB). Only below the TCB can
crossover percepts occur. Above the TCB, bouncing percepts always occur. Note that for a critical value θc of
the angle θ in Fig. 13, there is no possibility of a bouncing percept below this value. This is consistent with the
experimental and theoretical bifurcation diagrams shown in Figs. 2 and 11. A bouncing percept always occurs
whenever the frequency separation 1 f is large enough given relatively small IOI values. The actual existence of
an experimentally derived bifurcation diagram that is topologically equivalent to 13 needs to be demonstrated to
show the validity of our claims.

Based on the same principles we can predict a complementary phenomenon to bouncing and crossover.
Following the conventions in Fig. 12, Fig. 14 shows the input tone sequence (top), the resulting dynamics of the
neural field (middle), and the time series of the classification system (bottom). In this case, the interleaved input
tone sequences initially have a small frequency separation which diverges over time and then returns to the original
configuration. The corresponding progressive stabilization and destabilization from one-stream to two-streams and
back again to one-stream, we identify with the percept of “splitting and merging”.

4.3. Two streams with the same pitch

4.3.1. Theoretical treatment
When simple tone sequences of alternating amplitude tones (see Fig. 15) are presented to human subjects the

percept of two streams can still be perceived even though the frequencies of the alternating tones can be the same
or relatively close in frequency (see [2,44] and Section 4.3.2 below). From a biological perspective, an important
reason for considering such tone sequences is that it has been suggested that temporal modulations of acoustic
stimuli “are a critical stimulus attribute that assists us in the detection, discrimination, identification, parsing, and
localization of acoustic sources and that this wide ranging role is reflected in dedicated physiological properties
at different anatomical levels” ([56], p. 542). Thus, there may be a topographic ordering of neurons according to
amplitude modulated tuning.

The stream classification model we have presented is highly motivated by the relationship between cortical
activity induced by a stimulus and the resulting perception. Thus, we expect the model to capture some of the
possibilities for streaming in the context of alternating amplitude tones. The main reason for such expectation
is that the most significant factor affecting the neural field dynamics implicit in the model is the magnitude and
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Fig. 14. An illustration of an input pattern is shown in a which results in an inverted crossover or separation effect. b shows the contours of
the resulting neural field activity and c the time series of the classification system y(t). The time series y(t) converges from the negative (one
stream) fixed point to the positive (two streams) fixed point and back again.

distribution of “stimulus energy” it receives. This essentially translates to the relationship implicit in the model
that the higher the amplitude (or magnitude) of a stimulus the larger the contribution it makes to the resulting
neural field activity. That relationship has a direct impact on the functional I (t) (Eq. (7)), which in turn affects
the dynamics of the classification system y(t) (Eq. (6)). Simply put, the model is sensitive to stimulus magnitude
changes.

To test the model’s predictive possibilities, simulations were run using sequences of simple alternating amplitude
tones, as illustrated in Fig. 15. In each sequence, adjacent tones were set to have a constant amplitude ratio (AR).
Across sequences, the amplitude of one of the adjacent tones is kept constant but the amplitude of the intervening
tone varies by a constant factor. To account for backward and forward masking, a small silent gap of constant
duration was introduced between tones.

The numerical simulations predict the possibility for perception of two streams. Also, the simulations show that
one stream and a bistable region reminiscent (in topological structure only) of the van Noorden diagram are also
possible. For the case of zero frequency separation (1 f = 0) between the tones and an amplitude ratio of two
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Fig. 15. This figure illustrates the structure of alternating amplitude simple tone sequences. In this illustration all tones have nearly the same
frequency and adjacent tones have a constant amplitude ratio AR.

Fig. 16. Contour plot of the neural field activity under the influence of a stimulus consisting of simple alternating amplitude tone sequences.
The corresponding time series for the classification system y are shown below. They indicate a bistable percept of one or two streams.

(AR = Fixed Amplitude/Variable Amplitude = 1/0.5 = 2) we obtained Fig. 16, showing the resulting dynamics
of the neural field (top figure) and the corresponding dynamics (time series) of the classification system y for a
negative and positive initial condition (bottom figure).

The scenario depicted by Fig. 16 shows the bistable possibility of one or two stream(s) as indicated by the
dynamics of the classification system y. That is, y has both positive and negative attractors. Fig. 17 shows
bifurcation diagrams for AR vs. IOI for some values of 1 f .

The thick lines indicate a region where the time series of the classification system y oscillates between one
stream and two streams, that is, y(t) goes from positive to negative and back again repetitively. The reason for
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Fig. 17. The ratio of two amplitudes (AR) is plotted as a function of the inter onset interval (IOI) for five values of the frequency separation
1 f . The graphs represent the corresponding bifurcation diagram for each fixed set of parameters (I = One stream, II = Two streams).

this is that as the dynamics evolve the high amplitude tones in the sequences introduce enough energy to drive the
system into the two-stream region while the low amplitude tones only contribute enough energy to take the system
to the one-stream region. It should also be noted that this effect depends on the intrinsic time scale of the system
which must be sufficiently fast. Fig. 17 also shows that there is a bifurcation along the 1 f dimension with the
bifurcation diagrams for AR vs. IOI becoming more closer, in the topological sense, to the van Noorden diagram
as 1 f increases. The meaning of this can be interpreted as theoretical evidence for the existence of a (nonlinear)
relationship between frequency and amplitude in streaming and possibly in auditory perceptual phenomena in
general.

4.3.2. Experimental proof of existence
Here we describe an experiment demonstrating that the streaming phenomenon can occur with sinusoidal

stimuli that differ only in amplitude. Although streaming has been demonstrated in amplitude modulated stimulus
sequences comprised of complex tones (e.g., [56]), here we examine perception of simple sinusoidal tones of
constant frequency but with systematic amplitude modulation.
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Experimental methods

A. Subjects
Eleven subjects participated (5 females and 6 males). All had normal hearing according to self-report and were

naive to the purpose of the experiment.

B. Stimuli
Stimulus tones were always 600 Hz sine waves of 100 ms duration. Amplitude was circularly ramped over

the first and last 10 ms, with the central 80 ms at constant amplitude. In the first condition, each tone sequence
consisted of 20 pairs of tones T1–T2 with an IOI of 110 ms between all tones. The only parameter varied across
tone sequences was the amplitude ratio (AR) between adjacent tones T1 and T2. AR was kept constant within a
sequence. Values of AR relative to the highest amplitude tone were 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 1 (AR = 1
denotes equal amplitude of T1 and T2). The choice of a 10 ms gap between successive tones of a stimulus sequence
was based on the constraint that the streaming phenomenon should be perceivable for some range of AR values
even if there is some amount of forward and backward masking occurring between adjacent tones.

In a second, control condition, each trial consisted of three short tone sequences presented with a 500 ms
IOI between sequences. Each sequence was either (1) a T1–T2 sequence with AR value of 0.2 (intertone
IOI = 110 ms), or (2) a sequence with T1 being the reference amplitude and intertone IOI = 220 ms, i.e.,
there is no T2. Triad orders were sequences (a) 1, 2, 1; (b) 2, 1, 1; (c) 1, 2, 2; and (d) 2, 1, 2. Sequence 1 was
comprised of 12 tones whereas sequence 2 was comprised of 6 tones, with double the IOI. This condition was to
verify that subjects in fact heard the lowest amplitude tones.

C. Procedure
In the experimental condition, pairs of tone sequences were presented 5 times to subjects in a random order, with

500 ms between members of each sequence pair. All combinations of sequences were included with the exception
of sequences having AR = 0.3, AR = 0.5, and AR = 0.7 paired with itself. In total, there were 230 sequence pairs.
Order of sequence presentation for each pair was counterbalanced. The subjects’ task was to judge which of the two
sequences in a pair sounded slower. Tone sequences of the type used here that are perceived as two streams are also
perceived to be slower than sequences that are perceived as a single stream. Subjects responded by pressing one of
three labelled keys on the numeric keypad of the keyboard. Pressing the number “1” meant that the first sequence
was perceived as slower; pressing “2” meant that the second sequence was perceived as slower; and pressing “=”
meant that the two sequences were perceived as equal in rate.

Subjects were told that there were no right or wrong answers and that our interest was purely in how they
perceived the tone sequences. They were given 10 min rest breaks after the 115th trial.

The control condition was an ABX, forced-choice task in which subjects judged whether the rate of the third
tone sequence (X) was more like the first sequence (A) in the triad or more like the second sequence (B) in the triad.
Subjects indicated their responses by pressing one of two labelled keys on the numeric keypad of the keyboard.
Pressing “1” indicated that the rate of the third test sequence was more like the first sequence. Pressing “2” indicated
that the rate of the third sequence was more like the second sequence.

D. Results and discussion
Responses from the control condition were examined to verify that all subjects were able to hear the lowest

amplitude tone reliably. Seven of the subjects responded with 100% accuracy, 2 subjects responded with 95%
accuracy, 1 subject with 90% accuracy, and 1 subject with 85% accuracy. Thus, subjects correctly noted the slower
sequence, indicating that the low amplitude tone was perceived and contributed to the perception of a faster rate
sequence.

Fig. 18 shows the means and standard deviations of the responses across subjects. The x-axis represents the
AR difference between the two sequences in each pair. When the difference is negative, the amplitude difference
between successive tones within a sequence is greater in the first sequence than the second. In this case, subjects
judge the first sequence to be slower than the second. This pattern indicates that streaming has occurred in the first
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Fig. 18. Alternating amplitude tones streaming: experimental results. Means and standard deviations of the responses across subjects. The
x-axis (bar labels) represents stimulus sequence pairs excluding order of presentation.

sequence but not in the second. If streaming occurred in both sequences, subjects would respond that both are of
equal rate (denoted on the y-axis by 1.5 in Fig. 18).

When the AR difference is positive, the amplitude difference between successive tones within a sequence is
greater in the second sequence than the first. In this case, subjects judge the second sequence to be slower than the
first, indicating that streaming has occurred only in the second sequence. For small AR differences, subjects judge
the rates of the sequences to be equal.

Note the lack of an order effect: AR differences of −0.6, for example, are equivalent to AR differences of 0.6,
but with the sequences presented in the opposite order. The lack of an order effect was confirmed statistically by
a two-way repeated measures ANOVA with order and AR difference as factors, F(1, 5) = 2.67, p > 0.1. The
interaction of order and AR difference was similarly not significant, F(5, 5) = 1.88, p > 0.1.

In summary, in spite of the fact that all tones were of equal frequency and IOI was constant across sequences,
amplitude difference alone was sufficient to cause the pure-tone sequences to split into two perceptual streams.
This is in agreement with the model’s prediction of the possibility of perceiving one or two streams depending on
the AR of the tone sequences. However, the prediction that a bistable one-or-two stream scenario is possible was
not assessed by this experimental paradigm.

4.4. Timing implications of the model

Experimental results have demonstrated that auditory streaming becomes more pronounced when the rate of
alternation of the input tone sequences increases [1]. There are various time intervals that affect the rate of
alternation. Most experiments do not vary these time intervals independently of one another, so there is no direct
indication which of these time intervals is responsible for the effects of rate on auditory streaming. In our model
the intervals that affect streaming are offset to onset of successive tones within and between streams (B and D in
Fig. 19). Interestingly, Gestalt theorists also considered these intervals to be important, because they determine
temporal proximity. In contrast, Jones [26], for example, considers onset to onset of successive tones between
and within streams (A and C in Fig. 19) as the most relevant intervals, because they determine the regularity or
rhythmicity of the sequence. As stated earlier, the mechanism of our model is based on the dispersive properties
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Fig. 19. The definition of the time intervals present in a common streaming experiment are illustrated in a: A = Onset-to-onset time interval
between temporally adjacent tones. B = Silent gap between temporally adjacent tones. C = Onset-to-onset time interval between tones in the
same frequency range. D = Offset-to-onset time interval between tones in the same frequency range. b shows the induced neural field activity
for the above input tone sequence and illustrates the decay time of the neural field after offset of a stimulus tone. Intervals B and D are the most
significant for the streaming model presented.

of the neural field, or more precisely on the spatial and temporal decay rates of neural processing. These decay
rates account for the grouping of tones based on their proximity in time and frequency. In particular, as tones get
closer to each other along the time axis by shortening the time interval D, the likelihood that consecutive tones will
be grouped into one stream increases, because of the finite decay time for neural activity to spread as illustrated
in Fig. 19. As a consequence, the relevant time interval of our model is D within one stream and is B between
streams.

5. Discussion

There is evidence from neurophysiology that cortical and subcortical components are involved in the process of
integration of environmental signals beyond the primary sensory areas. In particular, it appears that the recruitment
of these higher areas is largely non-specific to the modalities involved, which implies a general mechanism to be
in place for the integration of signals to a coherent percept. For instance, the left inferior parietal cortex has been
hypothesized to be involved in the integration of visual–acoustic information to a common percept parametrized
by temporal disparity [57]. Other researchers have found similar networks to be involved in the spatiotemporal
integration of visual cues during collision judgments [58]. In the more complex scenario of speech perception,
Hickock and Poeppel [59] argued that the left inferior parietal cortex is also involved in the integration of auditory-
motor processes. Inspired by the large literature on integration phenomena across sensory modalities, here we
explored the possibility of a system composed of a primary sensory component and a secondary component,
that performs integration of external input signals. In particular for the auditory domain, we implemented the
special characteristic of the primary sensory system, its tonotopic organization. The secondary system does not
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have such organization, which is in consensus with the notion that this component is largely independent of the
details of the sensory modalities with an integrative function that transcends modalities. We limited our discussion
of example input sequences (Sections 4.1 through 4.3) to pure tones or, equivalently, to pitches. For real-world
stimuli involving more complex spectral structures, our model will require a preprocessing which identifies the
pitch of a tone sequence, perhaps along the lines of the ARTSTREAM model [40,41,43] in which a SPINET model
[60] performs an initial processing of the acoustic input sequence. We expect such a preprocessing stage to enable
a stream classifier as presented here to reproduce phenomena with more complex spectral properties such as the
continuity illusion [61]. The second limitation of the current stream classifier model is the absence of feedback
from the second to the first system. Such feedback is well-known to exist in real neurophysiological systems and
is involved in the mediation of attention and expectation. For the purpose of this manuscript, it is not necessary to
include feedback pathways, but it is very intuitive to suggest that feedback from the second system will bias the
neural field propagation in the first system and hence bias the overall dynamics of the stream classifier.

Percepts that depend on more complex temporal properties of the input sequences such as the bouncing and
crossing percept can be easily reproduced by a stream classifier model. This is in sharp contrast to extant stream
competition models that have difficulty reproducing crossing percepts. The extreme case is an angle of zero spanned
by the two interleaved crossing stimulus trajectories. As long as there is another quantity which makes these
stimulus trajectories distinct, then two streams with the same pitch may coexist perceptually. Thus, we have shown
both empirically and theoretically using a stream classifier that manipulation of the amplitude ratio of successive
pure tones can generate a percept of stream segregation. This effect is in sharp contrast to the nature of stream
competition models.

We understand that the stream competition models have, first, some kind of intuitive appeal in terms of the
notion of competition of streams, and second, have successfully reproduced many phenomena in the literature
using real-world stimuli. However, neurophysiological mechanisms for segregation and integration have started to
receive much attention. As we have shown here, an architecture suggested by the neurophysiological literature on
convergence zones can also reproduce some of the basic streaming phenomena. It is not unlikely that a combination
of these two mechanisms is present in the real biological system, in which the more peripheral systems are rather
stream-competition-like and the more cortical systems are more stream-classification-like.
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