

dynamicMatch
Match two note matrices

Syntax

M = dynamicmatch(pmat, nmat, title (optional));

Description
M = dynamicMatch(pmat, nmat) matches one note matrix to another using dynamic
programming.
If pmat is a note matrix that holds a performance and nmat is a note matrix that holds
the notation for that performance, the algorithm find the match that optimizes a scoring
function. The scoring function is built in to the algorithm and its parameters are not tun-
able. It matches individual notes in the performance to chords (called groups) in the no-
tation file, and the scoring function uses both pitch and timing information. Based on the
match, the program then determines which notes in the performance should be grouped
into chords.
A match structure is returned. The fields of the structure are as follows:

title Title of the piece

Nn Note matrix of the notation (input to program)

Np Note matrix of the performance (input to program)

GIn Group indices for notation (chords). Before the match, this array is
created. Any notes that have the same onset beat are grouped into
chords. Each row contains a chord (maximum of 10 notes).

GIp Group indices for performance (chords), before match. Before the
match nothing is grouped, so only the first column contains indices
into Np.

indN Indices (into GIn) of notated chords that match performance. Con-
tains only chords that match. If the chord was not performed (it was
a deleted in performance), it is not in this vector.

indP Indices (into Np) of performednotes that match notated chords.
Contains only chords that match. If the chord was not in the notation
(it was added in performance), it is not in this vector.

mtbl Match table is a 2-D array that describes the match of notated
chords to performed notes. Each non-zero value is the matching
score of a performed note. 10 = exact match, 3 = non-exact match.

realGIp Group indices for performance (chords), after match. The grouping
is done after the match, and depends not only on temporal informa-

tion, but also on how well notes match notated chords.

Tn Onset times of notated chords that match performance. Contains
only chords that match. If the chord was not performed (it was a de-
leted in performance), it is not in this vector.

Bn Onset beats of notated chords that match performance. Contains
only chords that match. If the chord was not performed (it was a de-
leted in performance), it is not in this vector.

Tp Onset times of performed chords that match performance. Contains
only chords that match. If the chord was not in the notation (it was
added in performance), it is not in this vector. The onset time of the
performed chord is calculated as the mean onset time of the notes
in the chord.

Bp Onset beats of performed chords that match performance. Contains
only chords that match. If the chord was not in the notation (it was
added in performance), it is not in this vector. For this reason Bp =
Bn, always.

tempoMap Tempo map based on match – beats per second (Hz). The tempo
map is diff(Bp) ./ diff(Tp). The first value is appended to
the beginning, so it is the same length as Bn.

periodMap Period map based on match – inter-beat intervals (ms). The period
map is diff(Tp) ./ diff(Bp). The first value is appended to
the beginning, so it is the same length as Bn.

velocMap Velocity map for matched chords. MIDI velocities of chords that
match. It is calculated as the mean velocity of the notes in the chord.

Nm Note matrix containing the match. This can be played via play midi.
You will hear a time-quantized version of the performance, minus
any notes that were added in performance (not in the notation). It
does not contain any notes that were deleted in performance either.

M Match report, a table containing information on the performace,
which notes match, which were substituted (wrong notes), which
were added and which were deleted. The complete strcutre of the
table is described below.

The format of the match report is

 nota ted perform nota ted perform nota ted perform nota ted perform nota ted perform
status index index note # note # onset onset velocity velocity duration duration

Status is one of
‘M’ – match: a performed note matched the notated note exactly.
‘sub’ – substitution: a performed note was substituted for one in the score
‘add’, – addition: a note that did not appear in the score was added in performance
‘del’ – deletion: a note that appeared in the score was not performed

Example
nmat = readmidi('twinkleNotation.mid');
pmat = readmidi('twinklePerformance.mid');

M = dynamicmatch(pmat, nmat, 'Twinkle, Twinkle Little Star')

M =

 title: 'Twinkle, Twinkle Little Star'
 Nn: [42x7 double]
 Np: [42x7 double]
 GIn: [42x10 double]
 GIp: [42x10 double]
 indN: [1x42 double]
 indP: [1x42 double]
 mtbl: [42x42 double]
 realGIp: [41x10 double]
 Tn: [41x1 double]
 Bn: [41x1 double]
 Tp: [41x1 double]
 Bp: [41x1 double]
 tempoMap: [41x1 double]
periodMap: [41x1 double]
 velocMap: [41x1 double]
 Nm: [42x7 double]
 M: {43x11 cell}

If we examine M in the array viewer, we find that

'M' 1 1 60 60 0 1.3906 82 82 0.5 0.2998
'M' 2 2 60 60 0.5 1.8989 72 83 0.5 0.5479
'M' 3 3 67 67 1 2.4443 91 81 0.5 0.3389
'M' 4 4 67 67 1.5 2.9624 84 90 0.5 0.3364
'M' 5 5 69 69 2 3.478 89 73 0.5 0.0864
'M' 6 6 69 69 2.5 3.75 91 64 0.5 0.25
'add' 6 7 NaN 69 NaN 4 NaN 83 NaN 0.4819
'M' 7 8 67 67 3 4.46 94 81 1 0.9731
'M' 8 9 65 65 4 5.4893 88 81 0.5 0.3457

'M' 9 10 65 65 4.5 6 87 83 0.5 0.5029
'M' 10 11 64 64 5 6.5103 86 80 0.5 0.8384
'del' 11 NaN 64 NaN 5.5 NaN 76 NaN 0.5 NaN
'M' 12 12 62 62 6 7.4854 87 81 0.5 0.2988
'M' 13 13 62 62 6.5 8 72 90 0.5 0.5
'M' 14 14 60 60 7 8.4673 93 72 1 1.0815
'M' 15 15 67 67 8 9.5469 86 90 0.5 0.2998
'M' 16 16 67 67 8.5 10.0444 76 83 0.5 0.4854
'M' 17 17 65 65 9 10.5068 89 73 0.5 0.3594
'M' 18 18 65 65 9.5 10.9985 86 83 0.5 0.5439
'M' 19 19 64 64 10 11.502 91 82 0.5 0.3301
'M' 20 20 64 64 10.5 12 80 82 0.5 0.4614
'M' 21 21 62 62 11 12.4707 93 81 1 0.8799
'M' 22 22 67 67 12 13.4819 84 83 0.5 0.3096
'M' 23 23 67 67 12.5 14 75 90 0.5 0.5122
'M' 24 24 65 65 13 14.478 91 80 0.5 0.4165
'M' 25 25 65 65 13.5 14.979 86 82 0.5 0.5093
'M' 26 26 64 64 14 15.4863 91 81 0.5 0.355
'M' 27 27 64 64 14.5 16 84 82 0.5 0.481
'sub' 28 28 62 59 15 16.5 93 64 1 1
'M' 29 29 60 60 16 17.4468 82 81 0.5 0.3403
'M' 30 30 60 60 16.5 17.9287 72 83 0.5 0.54
'M' 31 31 67 67 17 18.4351 91 90 0.5 0.3325
'M' 32 32 67 67 17.5 18.9268 84 90 0.5 0.3262
'M' 33 33 69 69 18 19.3955 89 82 0.5 0.3457
'M' 34 34 69 69 18.5 19.8936 91 82 0.5 0.5127
'M' 35 35 67 67 19 20.3735 94 81 1 1.0493
'M' 36 36 65 65 20 21.3926 88 81 0.5 0.2998
'M' 37 37 65 65 20.5 21.8643 87 81 0.5 0.5166
'M' 38 38 64 64 21 22.3579 86 81 0.5 0.3291
'M' 39 39 64 64 21.5 22.8477 76 82 0.5 0.5352
'M' 40 40 62 62 22 23.3433 87 80 0.5 0.3198
'M' 41 41 62 62 22.5 23.8047 72 82 0.5 0.5439
'M' 42 42 60 60 23 24.2979 93 81 1 1.104

We can also view and edit the match in the gui match window, using gwm.m.

Algorithm
The matcher utilizes dynamic programming techniques, runs in polynomial time and is
fully described in (Large, 1993). The algorithm for this task was developed in the con-
text of a study of music production errors (Palmer & van de Sande, 1993). The dynamic
programming algorithm finds an optimal match between the two sequences, given a
scoring function. The scoring function is hard coded into this program: exact match
(note-for-note) = 10 points, substitution (wrong note) = 3 points. No points are given for
additions or deletions. The original program written for (Palmer & van de Sande, 1993)

required that the two performances be grouped into chords before matching the se-
quences. This was found to cause difficulties for very long performances, because often
no adequate temporal criterion can be found. In this implementation, the notation matrix
is grouped into chords (notes beginning on the same beat are chords); it does not group
the performance before the match. It also uses an additional scoring function for timing
information, and optimizes the sum of the two scoring functions. Thus, performed notes
are matched to notated chords, yielding a many-to-one match. This match is summa-
rized in mtbl, indN and indP (see above). Based on this information, the program goes
on to group the performance into chords. Because of this added complexity, the
matcher may occasionally match incorrectly (this almost always has to do with identify-
ing chords incorrectly). Thus a graphical match inspector / editor is provided to inspect
and correct the output (gmw.m).

References

Large, E. W. (1993). Dynamic programming for the analysis of serial behaviors.
 Behavior Research Methods, Instruments, and Computers, 25 (2), 238-241.

Palmer, C. & van de Sande, C. (1993). Units of knowledge in music performance.
 Journal of Experimental Psychology: Learning, Memory, & Cognition, 19, 457-470.

See Also

gmw.m

gmw

Gui Match Window: Match inspector & Editor

Syntax

gmw(M);

Description
gmw(M) creates a graphical user interface that allows you to view and edit the match
structure calculated by dynamicMatch. On the left side of the window, the piano roll
graph of the notation and performance note matrices is shown. On the piano roll
graphs, time in seconds is displayed on the bottom x-axis; time in beats is shown on the
top of the x-axis. MIDI note number is displayed on the y-axis left side; the pitch or note
name is displayed on the right side of the y-axis. A grand staff is also displayed for
readability.

By clicking on a note in the notation graph, one can select all the notes in that chord,
and also the notes in the performance that match the chord. By clicking on the forward
and backward arrow buttons between the two piano roll graphs one can move backward
and forward to inspect the output of the matching process.

As described in dynamicMatch.m, each note in the performance is matched to chord
in the notation and the result is returned on mtbl. On the right hand side of the window
the match table is presented graphically. This shows in another way which notes of the
performance were matched to which chords in the notation.A black square denotes a
“match”, the performed note matches a note in the notated chord exactly. A gray square
denotes a “substitution”. A missing square for a notated chord denotes a “deletion”, and
a missing square for a performed note indicates an “addition”. As one steps through the
match in the piano roll windows, the corresponding entry in the match table is also high-
lighted.
Due to complexities of the matching process and data analysis requirements, the
matches may need to be corrected slightly. This can be achieved in the match window.
Clicking on any square changes the match For a match or substitution (black or gray
square) a click removes it from the match. Clicking on a square that is filled will delete
the match and that note in the performance will not be matched to anything in the no-
tated. This is what Palmer and van de Sande (1993) called an addition. This will re-
sult in an empty row, in the match window. A deletion (Palmer & van de Sande (1993))
occurrs when there is a missing note in the performance. Deleting the match for a
chord in the notation will leave an empty column. By clicking on a white square, the no-
tated chord/performed note combination is added to the match. A black or gray square
will appear there, and any other match in the same row is replaced. You can match
multiple notes in the performance to one chord in the notation.
Important: Every time you make a change, gmw saves it in the base workspace as the
variable M. If your original match structure was named M, it will be overwritten. This
could be a good thing of a bad thing, depending on how you want to work. We recom-
mend naming the match variable M, because as you edit the match, you will also be
able to view the results fof the changes in by keeping the array editor open and viewing
M.M. We do this in the example below.

Example
nmat = readmidi('twinkleNotation.mid');
pmat = readmidi('twinklePerformance.mid');

M = dynamicmatch(pmat, nmat, 'Twinkle, Twinkle Little Star')

M =

 title: 'Twinkle, Twinkle Little Star'
 Nn: [42x7 double]
 Np: [42x7 double]
 GIn: [42x10 double]
 GIp: [42x10 double]
 indN: [1x42 double]
 indP: [1x42 double]
 mtbl: [42x42 double]
 realGIp: [41x10 double]
 Tn: [41x1 double]

 Bn: [41x1 double]
 Tp: [41x1 double]
 Bp: [41x1 double]
 tempoMap: [41x1 double]
periodMap: [41x1 double]
 velocMap: [41x1 double]
 Nm: [42x7 double]
 M: {43x11 cell}

gmw(m);

Opening M.M in Matlab’s Array Editor, we see:
'M' 8 9 65 65 4 5.4893 88 81 0.5 0.3457
'M' 9 10 65 65 4.5 6 87 83 0.5 0.5029
'M' 10 11 64 64 5 6.5103 86 80 0.5 0.8384
'del' 11 NaN 64 NaN 5.5 NaN 76 NaN 0.5 NaN
'M' 12 12 62 62 6 7.4854 87 81 0.5 0.2988
'M' 13 13 62 62 6.5 8 72 90 0.5 0.5
'M' 14 14 60 60 7 8.4673 93 72 1 1.0815

In this example the two E’s in the notated version are not both performed, instead a sin-
gle E is played. Thus, the program registers a deletion. To change the performed E to
match the second notated E, 1) unselect this event by moving the selection to the previ-
ous event, and then 2) click on square 11,11 in the match window.

Then the graphics window will look like this:

and the array editor will display this:

'M' 8 9 65 65 4 5.4893 88 81 0.5 0.3457
'M' 9 10 65 65 4.5 6 87 83 0.5 0.5029
'del' 10 NaN 64 NaN 5 NaN 86 NaN 0.5 NaN
'M' 11 11 64 64 5.5 6.5103 76 80 0.5 0.8384
'M' 12 12 62 62 6 7.4854 87 81 0.5 0.2988
'M' 13 13 62 62 6.5 8 72 90 0.5 0.5
'M' 14 14 60 60 7 8.4673 93 72 1 1.0815

References
Large, E. W. (1993). Dynamic programming for the analysis of serial behaviors.
 Behavior Research Methods, Instruments, and Computers, 25 (2), 238-241.

Palmer, C. & van de Sande, C. (1993). Units of knowledge in music performance.
 Journal of Experimental Psychology: Learning, Memory, & Cognition, 19, 457-470.

