
Matching a Performance to Notation
Sometimes an analysis of music performance requires matching a performance to its corresponding notation, or score. The toolbox provides a function, dynamicMatch.m to perform this task. The matcher utilizes dynamic programming techniques, runs in polynomial time and is fully described in (Large, 1993). The algorithm for this task was developed in the context of a study of music production errors (Palmer & van de Sande, 1993). The dynamic programming algorithm finds an optimal match between the two sequences, given a scoring function that is hard coded into the program.

The original program written for (Palmer & van de Sande, 1993) required that the two performances be grouped into chords before matching the sequences. In a recent study of piano performance (Large, Rankin, Fink & Houlton, in preparation) this was found to cause difficulties for very long performances, because often no adequate temporal criterion can be found. In this more recent implementation, the notation matrix is grouped into chords (notes beginning on the same beat are chords); it does not group the performance before the match. It also uses an additional scoring function for timing information, and optimizes the sum of the two scoring functions. Thus, performed notes are matched to notated chords, yielding a many-to-one match. Based on this information, the program goes on to group the performance into chords.

Because of the added complexity of grouping and finding the match simultaneously, the matcher may occasionally match incorrectly (this almost always has to do with identifying chords incorrectly). Thus a graphical match inspector / editor is provided to inspect and correct the output, gmw.m.

In the following example, we match one of the performances from (Large, Rankin, Fink & Houlton, in preparation), The Goldberg Variation, Aria, by J. S. Bach. In this example, the performer was instructed to play the piece as written, without any ornaments beyond what was notated in the score. Code for the example is provided in bachExample.mat.

>> nmat = readmidi('bachNotation.mid');

>> pmat = readmidi('bachPerformance.mid');

>> M = dynamicmatch(pmat, nmat, 'Goldberg Variations Aria');

>> M

M =

 title: 'Goldberg Variations Aria'

 Nn: [986x7 double]

 Np: [995x7 double]

 GIn: [706x10 double]

 GIp: [995x10 double]

 indN: [1x990 double]

 indP: [1x990 double]

 mtbl: [995x706 double]

 realGIp: [704x10 double]

 Tn: [704x1 double]

 Bn: [704x1 double]

 Tp: [704x1 double]

 Bp: [704x1 double]

 tempoMap: [704x1 double]

 periodMap: [704x1 double]

 velocMap: [704x1 double]

 Nm: [990x7 double]

 M: {998x11 cell}
Now we can inspect the match by typing

>> gmw(M)

and we see the window

[image: image1.png]
We can also inspect the match by viewing M.M in the Matlab array editor. This produces

	'sub'
	1
	1
	79
	0
	0
	0
	64
	0
	0.9917
	0

	'M'
	1
	2
	55
	55
	0
	0.0312
	64
	19
	2.9917
	3.4479

	'M'
	2
	3
	59
	59
	1
	1.1354
	64
	37
	1.9917
	2.3438

	'M'
	2
	4
	79
	79
	1
	1.151
	64
	60
	0.9917
	1.3802

	'M'
	3
	5
	81
	81
	2
	2.3542
	64
	58
	0.1167
	0.3125

	'M'
	3
	6
	62
	62
	2
	2.3646
	64
	25
	0.9917
	1.4896

	'M'
	4
	7
	79
	79
	2.125
	2.5312
	64
	59
	0.1167
	0.9479

	'M'
	5
	8
	81
	81
	2.25
	2.6667
	64
	61
	0.4917
	0.8125

	'M'
	6
	9
	83
	83
	2.75
	3.2604
	64
	73
	0.2417
	0.4531

	'M'
	7
	10
	54
	54
	3
	3.5729
	64
	34
	2.9917
	3.3385

	'M'
	7
	11
	81
	81
	3
	3.5781
	64
	72
	0.4917
	1.0208

	'M'
	8
	12
	79
	79
	3.5
	4.125
	64
	61
	0.2417
	0.474

	'M'
	9
	13
	78
	78
	3.75
	4.375
	64
	62
	0.2417
	0.4115

	'M'
	10
	14
	76
	76
	4
	4.6979
	64
	51
	0.4917
	0.9427

	'M'
	10
	15
	57
	57
	4
	4.7083
	64
	37
	1.9917
	0.375

	'M'
	11
	16
	74
	74
	4.5
	5.2708
	64
	48
	1.4917
	1.6406

	'M'
	12
	17
	62
	62
	5
	5.8646
	64
	33
	0.9917
	1.474

	'M'
	13
	18
	52
	52
	6
	7.0938
	64
	38
	2.9917
	3.0052

	'M'
	13
	19
	67
	67
	6
	7.1302
	64
	41
	0.1167
	0.1875

	'M'
	14
	20
	66
	66
	6.125
	7.3125
	64
	57
	0.1167
	0.1823

	'M'
	15
	21
	67
	67
	6.25
	7.4531
	64
	54
	0.7417
	0.7344

	'M'
	16
	22
	55
	55
	7
	8.3646
	64
	36
	1.9917
	1.4115

	'M'
	16
	23
	69
	69
	7
	8.375
	64
	50
	0.1167
	0.1719

	'M'
	17
	24
	67
	67
	7.125
	8.5625
	64
	57
	0.1167
	0.125

	'M'
	18
	25
	66
	66
	7.25
	8.6875
	64
	59
	0.1167
	0.1198

	'M'
	19
	26
	67
	67
	7.375
	8.8021
	64
	62
	0.1167
	0.1146

	'M'
	20
	27
	69
	69
	7.5
	8.9479
	64
	62
	0.1167
	0.2552

Note that the first entry here is note number zero. This is some sort of error with readmidi, because the file plays correctly.

Now let’s carefully examine the match, and make sure that it says what we want. Scrolling down in the array editor, we find:

	'M'
	40
	51
	74
	74
	12
	14.1094
	64
	73
	0.9917
	1.0208

	'M'
	41
	52
	50
	50
	13
	15.25
	64
	59
	1.9917
	1.9635

	'M'
	41
	53
	74
	74
	13
	15.2552
	64
	62
	0.9917
	1.3333

	'M'
	42
	54
	55
	55
	14
	16.3438
	64
	31
	0.9917
	1.5156

	'del'
	42
	NaN
	76
	NaN
	14
	NaN
	64
	NaN
	0.1167
	NaN

	'sub'
	43
	55
	74
	76
	14.125
	16.4167
	64
	53
	0.1167
	0.2969

	'add'
	44
	56
	NaN
	74
	NaN
	16.5885
	NaN
	60
	NaN
	0.625

	'M'
	44
	57
	76
	76
	14.25
	16.7135
	64
	57
	0.4917
	0.5

	'M'
	45
	58
	77
	77
	14.75
	17.2708
	64
	70
	0.2417
	0.4323

Now, we zoom in to that spot using the graphical interface window and see:

[image: image2.png]
Here the matcher has failed to group note numbers 55 and 76 into a chord, causing some local problems in the match.

To fix this, 1) move the selection back by clicking on the back arrow between the piano roll windows, 2) click on the square 55, 42 and then on the square 56, 43. Then the array editor displays:

	'M'
	40
	51
	74
	74
	12
	14.1094
	64
	73
	0.9917
	1.0208

	'M'
	41
	52
	50
	50
	13
	15.25
	64
	59
	1.9917
	1.9635

	'M'
	41
	53
	74
	74
	13
	15.2552
	64
	62
	0.9917
	1.3333

	'M'
	42
	54
	55
	55
	14
	16.3438
	64
	31
	0.9917
	1.5156

	'M'
	42
	55
	76
	76
	14
	16.4167
	64
	53
	0.1167
	0.2969

	'M'
	43
	56
	74
	74
	14.125
	16.5885
	64
	60
	0.1167
	0.625

	'M'
	44
	57
	76
	76
	14.25
	16.7135
	64
	57
	0.4917
	0.5

	'M'
	45
	58
	77
	77
	14.75
	17.2708
	64
	70
	0.2417
	0.4323

and the match window looks like this:

[image: image3.png]
Note that the array editor updates automatically because we named the match variable M. After each edit, gmw automatically writes the variable M into the base workspace.

Take some time, step through and inspect the entire match. Pay particular attention to substitutions, additions and deletions. You will notice the pianist made a few errors, but not many. Also, in this example there is one more correction to be made at location 85, 117. After this edit, the match is correct. Then we can display the tempo map:

[image: image4.png]
References
Large, E. W. (1993). Dynamic programming for the analysis of serial behaviors.

Behavior Research Methods, Instruments, and Computers, 25 (2), 238-241.

Large, E. W., Rankin, S. K., Fink, P. (2009). Fractal Tempo Fluctuation and Pulse Prediction. Music Perception.

Palmer, C. & van de Sande, C. (1993). Units of knowledge in music performance.

Journal of Experimental Psychology: Learning, Memory, & Cognition, 19, 457-470.

