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Abstract. We investigated the performance of an agent that
uses visual information in a partially unknown and changing
environment in a principled way. We propose a methodol-
ogy to study and evaluate the performance of autonomous
agents. We first analyze the system theoretically to deter-
mine the most important system parameters and to predict
error bounds and biases. We then conduct an empirical anal-
ysis to update and refine the model. The ultimate goal is to
develop self-diagnostic procedures. We show that although
simple models can successfully predict some major effects,
empirically observed performance deviates from theoretical
predictions in interesting ways.

1 Introduction

In this paper we investigate the performance of an agent
which acts using visual information in a partially unknown
and changing environment in a principled way. Unlike in
the empirical sciences, where experiments are performed to
identify mechanisms of task performance, in the engineer-
ing sciences artificial agents are designed according to well
known principles. Thus we know the contents of our “black
boxes”a priori and can predict in detail how the agent will
perform in a constrained environment. What is often less
clear, however, is how the artificial agent will interact with
the (very complex) real world. The environment in which
the agent perceives and acts provides uncontrolled sources
of variability determining the performance of the agent. Our
goal, predicated by good engineering science, is to deter-
mine by empirical experiment aspects of agent-environment
interaction that affect performance in systematic ways. In
so doing, we hope to show the relationship between a de-
terministic model of the agent, systematic determinants of
performance that arise from the agent-environment interac-
tion, and those determinants of performance that are best
modeled stochastically.

In order to focus on these issues we selected the task of
landmark based localization for a mobile agent, the determi-
nation of position and orientation relative to a landmark (also

known as pose estimation). Within the larger system, local-
ization serves two purposes. First, we assume that the envi-
ronment contains definite, distinguishable landmarks that the
agent can detect. By estimating its location with respect to
landmarks the agent can determine its global position using
an internal map that indicates the position of each landmark.
These landmarks are assumed to be stationary. Second, by
identifying landmarks mounted on other mobile agents, each
agent can identify others and localize itself with respect to
others. In both cases the agent must determine its distance
from the landmark and its orientation with respect to the
normal of the landmark. This operation does not assume any
representation of the environment, nor is it based on poten-
tially unreliable odometry readings. However, this strategy
can be combined with odometry readings which can reg-
ularly be recalibrated using the more precise localization
strategy. The localization algorithm used here is not unique
or novel, rather it serves as a means of demonstrating our
experimental methodology.

Our analysis proceeds in two stages. First, we analyze
the equations that the agent uses to perform the localization
task. This analysis helps us to identify the most important
variables in determining the performance of the agent as it
interacts with the environment [1]. In addition, the analy-
sis makes certain predictions about the performance of the
localization algorithm. Next, informed by this analysis, we
design an empirical experiment with which to test the per-
formance of the agent in a realistic environment. We use an
analysis of variance to evaluate our results.

By these means we address three issues. First, we attempt
to verify that the agent actually performs within predicted
error bounds as it interacts with the environment. Second, we
determine systematic deviations from predicted performance
as we manipulate various factors that are determined by the
agent-environment interaction. Finally, we address the ba-
sic methodological question of how well we can model the
agent-environment interaction based on physics and geome-
try, what factors are best explored by empirical experimen-
tation, and what must or can be understood or modeled as
stochastic processes.

The remainder of this paper is organized as follows:
Sect. 2 presents the localization algorithm, Sect. 3 addresses
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performance issues through a detailed sensitivity analysis of
the localization algorithm, and Sect. 4 describes an experi-
ment designed to test the performance of the system under
realistic conditions and uses an analysis of variance to eval-
uate the results. We conclude by discussing the implications
of our results for performance testing and for building more
robust autonomous agents.

2 The localization algorithm

The recognition of landmarks and estimation of relative po-
sition are accomplished via a landmark based localization
algorithm. The goal of the localization algorithm is to find
and track stationary or moving landmarks in the environment
and determine their position relative to the viewing camera.
This functionality serves two purposes:

1. Determine agent’s absolute location: Landmarks are
placed at various static locations in the environment,
identifying positions in the agent’s internal map. The al-
gorithm determines agent position relative to landmarks,
thus absolute position in the environment can be deter-
mined.

2. Identify and localize other agents: Landmarks are mount-
ed on four sides of each agent, uniquely coding the iden-
tity and side of the agent. Therefore another agent can be
recognized from any direction and its position relative to
the viewing camera can be determined.

This task is a variant of the well-known pose-estimation
problem [2, 3, 4], using artificial landmarks with known
properties [5, 6]. The task is composed of two main steps:

1. Landmark recognition: Identify the landmark and deter-
mine its size.

2. Pose estimation: Calculate the position and orientation
of the agent with respect to the landmark based on agent
parameters, environmental constraints, and data retrieved
in the landmark recognition step.

The next two subsections describe these steps in detail.

2.1 Landmark recognition

We choose landmarks that are easily detectable, and distin-
guishable both from the background and from one another
so as to provide robust cues for the pose estimation. We use
black-and-white 2D landmarks pasted horizontally on a pla-
nar surface. The landmarks are composed of two parts, a set
of vertical bars and a binary code (see Fig. 1).

The left portion of the landmark contains four equally
sized vertical black bars common to all landmarks. It is used
to detect the location of the landmark. It is easy to recognize
and our experience shows that other objects rarely result in
a similar pattern causing false alarms. The right half of the
landmark represents a binary code that is unique to each
landmark, therefore it can be used unambiguously to iden-
tify other agents or places in the environment. The legal
binary codes were selected in such a way as to minimalize
the probability of misdetection. This is a simplified version

of real-life scenarios in which street signs, road signs, and so
forth may serve as landmarks. However, we believe that our
algorithm for vision based localization is general modulo the
following assumptions [7]: (a) the markers are posted on a
plane, and (b) the agent has the template for the marker, in-
cluding its overall size and expected height from the ground.

The landmark recognition algorithm contains three main
steps: gray-scale to black-and-white conversion, vertical bar
detection, and binary code extraction. Gray-scale to black-
and-white conversion is performed either using constant or
adaptive thresholding. Both assume the one byte represen-
tation of a pixel. The former uses a constant threshold of
128 whereas the latter uses the average pixel value of the
entire image as threshold. Absolute thresholding is faster but
less robust. Vertical bar detection and binary code extraction
make use of the fact that the landmarks are mounted hor-
izontally and scan the black-and-white image horizontally
line by line. Because these steps are not crucial to the ex-
periment to be described, they are not explained in further
detail here.

2.2 Pose estimation

Once a landmark is recognized on the camera image, the
next step is to determine the position of the camera rela-
tive to the landmark. Relative position can then be used to
determine the location of the agent within the environment,
given a stationary landmark whose actual location is known.
Alternatively, it can be used to determine the position of an-
other agent relative to the camera. The landmark detection
algorithm determines the relative position of the landmark
in terms of the following variables, as shown in Fig. 2:

– R: the horizontal component of the distance between the
center of the agent and the center of the landmark

– θ: the angle between the heading of the agent and the
center of the landmark

– Γ : the angle between the heading of the agent and the
plane containing the landmark

Thus,R and θ are the polar coordinates of the landmark
in an agent-centered coordinate system that is aligned with
agent-heading direction. They determine the position of the
center of the landmark relative to the agent. The parameter
Γ determines the orientation of the surface on which the
landmark is located relative to agent heading direction.

The above parameters can be determined from a single
image given the camera parameters, the size of the landmark,
and its height relative to the camera, based on the method
proposed in [8] and further developed in [9]. The parameters
are determined using the following expressions:

r =√
h2

(
[1+2 cot2(αhp)]±

√
[1+2 cot2(αhp)]2−h2

r+4z2 cot2(αhp )

h2
r

)
(1)

R =
√
r2 − z2 (2)

θ = δcam − αwc (3)

γ = arccos

(
(r2 − w2

r) tan(αwp)
2rwr

)
(4)

Γ = γ + θ + 90 (5)
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Table 1. Variables used in the equations of the localization algorithm and in their derivations in the Appendix, together
with the figures in which they are illustrated. Input parameters describe the agent (e.g., focal length,f ), or the constraints
of the environment (e.g., the actual size of the landmark,wr, hr); all others are computed from the visual input to the
localization module

Variable Description See Figure
wr, hr Half of actual size (width/height) of bars of landmark (input:wr = 126 mm,hr = 86 mm) 17, 19

wp, hp Perceived size (width/height) of bars of landmark (computed as the size of the bars
detected on the CCD chip)

18

wd, hd Distance between leftmost/topmost pixel of bar and image center (computed) 18

wc, hc Distance between center pixel of bar and image center (computed)

αwp, αhp Angle subtended by wp, hp, respectively {computed:

αhp = arctan
[
fhp/

(
f2 + hd(hd + hp)

)]
}

17, 18

αwc, αhc Angle subtended bywc, hc, respectively

δcam Camera pan relative to agent heading direction (read from the turn-table)

L Focal point of camera 17, 18, 19

f Camera focal length (input:f = 17.3 mm) 19

z Relative height (height of camera minus height of center of landmark; input:z =
172.7 mm)

19

r Distance between camera and center of landmark (Eq. 1) 2, 17, 19

R Distance between camera and landmark horizontally (output: Eq. 2) 2

γ Angle between normal of landmark plane and direction of landmark center relative to the
camera horizontally (Eq. 4)

2, 17

γh Angle between normal of landmark plane and direction of landmark center relative to the
camera vertically

19

Γ Angle between agent heading and plane containing the landmark (output: Eq. 5) 2

θ Viewing angle of landmark center from agent (output: Eq. 3) 2

These equations are derived in the Appendix. Variable defi-
nitions are given in Table 1, and illustrated in the Appendix.
There are two ambiguities in these equations. First, Eq. 1
has two solutions. This ambiguity can be resolved using the
fact that the perceived size of the landmark is proportional
to the distance. Second, Eq. 4 does not determine the sign of
the angleγ. To determine it we rely on the distortion due to
the perspective projection. We exploit the fact that the size
of the vertical bars and that of the binary code are the same;
therefore whichever is closer to the camera is perceived as
larger.

2.3 Environmental influence
on landmark based position estimation

The output of the localization algorithm is computed using
Eqs. 1–5. Thus the variables in Table 1 determine the output
of the algorithm. Some of these variables describe the agent
(f , δcam and partlyz, i.e., the height of the camera) and
are determined in advance by calibration. Other variables
describe the aspects of the environment, i.e., the landmark
(hr, wr, and partlyz, i.e., the height of the landmark from
the ground). We might havea priori knowledge about these
values or, alternatively, a stereo vision algorithm can be used
to extract appropriate features from the scene and determine
appropriate values.

The values of the remaining variables (hp, hd, wp, wd,
αwc) are provided by the landmark recognition algorithm,
and they are affected by the agent-environment interaction.
Factors such as lighting conditions, distance from the land-
mark, viewing angle, and agent motion all contribute to de-
termine the values of these variables, that is, they determine

system performance. These factors are called task-level pa-
rameters [10]. Previous work carried out a study of the ro-
bustness of the algorithm [11]. In the next section we analyze
the sensitivity of the localization algorithm to the values of
the variables. In Sect. 4 we empirically determine the algo-
rithm’s performance as we vary the task level parameters.

3 Sensitivity analysis of the localization algorithm

This section takes a theoretical approach to characteriz-
ing the behavior of the localization algorithm described by
Eqs. 1–5. The advantage of selecting such a simple task
as the landmark based ego-position estimation is that one
can analyze and characterize the sensitivity of the algorithm
to variations in input values. This helps to determine what
information is most critical to performance, and how this
information influences the behavior of the system. There are
two reasons for performing such a sensitivity analysis. First,
it helps to determine which task-level parameters need to
be tested empirically because it demonstrates variables to
which the algorithm is most sensitive. Second, it predicts
the behavior of the system by estimating error bounds and
predicting error biases [12–14].

The values of certain variables change depending upon
the agent-environment interaction. For example, perceived
size of the landmark,hp and wp, depends upon distance
from the landmark, among other things. Thus if the algorithm
turns out to be very sensitive to perceived height, it makes
sense to design an experiment that manipulates the task-
level parameterdistanceas an independent variable. Based
on the sensitivity of such variables we can also provide error
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Fig. 1. The landmark: vertical bars followed by a binary code. The bars are
constant to each landmark, serving as a header, while the binary code is a
unique identifier

Fig. 2. Meaning of the parameters (r,R, θ, γ, Γ ) determined by the local-
ization algorithma Top view of the setup.Arrow denotes heading direction
of the agent.b Side view of the setup

Fig. 3. a Jacobian of distance measurement: the sensitivity of the distance
measurement with respect to its five parameters as a function of distance.
The curves predict bounds and biases on the error resulting from unit errors
in the different variables.b The average of the error bounds due to error
in the perceived height (hp), predicting overestimation ofR that increases
with distance. (Error is percentage of the distance)

bounds, and assuming that errors are normally distributed
we can determine expected mean error (bias). Other values
in the algorithm are constant, determined by the physical
device (focal length,f ) or by constraints imposed on the
environment (size of the landmark,hr, wr). Error in such
parameters (e.g., calibration errors) lead to error bias.

To analyze sensitivity to the above parameters we com-
puted the first derivative, i.e., the Jacobian of the system
equations, or approximated the derivative by differences.
The following sections describe the results of a sensitiv-
ity analysis for the estimate of distance,R, and then for the
estimate of angle,Γ .

3.1 Analyzing the distance measurement

Equation 1 describes the distance between the focal point
of the camera and the center of the landmark. Thus dis-
tance estimation,R, depends upon the variables of Eq. 1,
most importantly perceived size (height),hp, and vertical
displacement,hd, of the landmark. These values determine
the size and position of the perspective projection of the
landmark’s vertical axis of symmetry and are provided by
the landmark recognition algorithm. Since the vertical angle
between the image plane and the plane of the landmark is
constant from all viewing angles, these values depend only
upon the distance, not upon the viewing angle. Distance es-
timation also depends upon the constantsf , focal length,z,
relative height, andhr, actual landmark size (height).

Differentiating Eq. 1 with respect to these variables de-
termines the sensitivity of the distance measurement. To ob-
tain results in units comparable to empirical data, we com-
puted differences instead of the derivatives. We calculated
the effect of adding or subtracting one unit to each variable
or constant. We defined one unit as 1 pixel forhp andhd,
1 mm for hr, 10 mm for z and 0.1 mm forf . These dif-
ferences are plotted in Fig. 3a, showing error in distance
estimate (R) as a percentage of actual distance. The curves
corresponding tohp andhd provide bounds on distance esti-
mation error because these bounds are determined by agent-
environment interaction (assuming 1-pixel errors). If we as-
sume normally distributed errors, we can also predict bias
in the error estimate by taking the average of the upper and
lower curves. The curves forf , z, andhr predict the nearly
constant bias that would result from miscalibration of these
constant values.

Figure 3a shows that distance estimation is most sen-
sitive to hp, the perceived size (height) of the landmark.
Even a 1-pixel error can result in a significant error in the
distance estimation. Notice that the upper and lower error
bounds are not symmetric: the underestimation of the dis-
tance due to adding a pixel is smaller than the overestimation
resulting from removing a pixel. Observing that in Eq. 1 es-
timated distance,R, is inversely proportional to perceived
height (r = ah−1

p + c), adding a pixel results in an underesti-

mation errorerrunder =
[
ah−1

p + c
] − [

a
(
hp + 1

)−1
+ c
]

=

a
[
hp(hp + 1)

]−1
, while removing a pixel gives an overesti-

mation errorerrover =
[
ah−1

p + c
] − [

a
(
hp − 1

)−1
+ c
]

=

−a [hp(hp − 1)
]−1

, andabs(errover) > abs(errunder). As-
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suming normally distributed errors, and taking the average
of the bounding curves, this predicts a positive error bias,
a slight overestimation ofR that increases with actual dis-
tance, as shown in Fig. 3b.

Referring again to Fig. 3a, we see that miscalibration of
hr or f introduces a nearly constant error bias. For exam-
ple, using a smaller value ofhr is equivalent to placing the
landmark further away from the camera, and so forth. One
can also see thathd and z have a negligible effect on the
estimation.

3.2 Analyzing the angle measurement

The localization algorithm determines the position of the
agent with respect to the landmark in terms of two angles,
θ and Γ , computed by Eqs. 3 and 5. Assuming that the
landmark is always centered in the image (i.e.,αwc = 0 in
Eq. 3),θ is equal to the camera pan angle relative to the agent
(δcam). Thus its accuracy depends solely on determining the
pan angle.

The angleγ (Eq. 4), the angle between the camera and
the normal of the plane of the landmark, depends on the
perceived size of the landmark (wp, hp), and its perceived
displacement (wd, hd), provided by the landmark recogni-
tion algorithm. As explained in Sect. 3.1,hp andhd depend
solely on the distance. On the other hand,wp andwd, the
size and position of the perspective projection of the hor-
izontal axis of symmetry of the landmark, also depend on
the viewing angle. This is because the horizontal angle be-
tween the image plane and the plane of the landmark is not
constant, but corresponds to the viewing angle.

Similarly to the distance computation, the angle esti-
mate is most sensitive to the perceived size of the landmark
(wp, hp, shown in Fig. 4). Sensitivity depends upon both
the distance and the angle. Distance is not very significant,
but the viewing angle is of great importance. Surprisingly,
sensitivity is greatest close to the right angle, at 90◦, be-
cause the derivative tends to infinity. Although intuitively
one might expect that this measurement would be the least
sensitive when directly facing the landmark, Eq. 4 imme-
diately explains the result: the derivative of the arccos(x)
function tends to infinity ifx → 1, i.e., around 0◦, which
using Eq. 5 corresponds to the right angle. Computing differ-
ences instead of the derivatives causes the parameter of the
arccos(·) function to exceed 1. In the algorithm such values
are truncated to 1, so the numerical error remains bounded.

The estimate ofΓ is also sensitive to the actual size of
the landmark (wr, hr), its camera-relative height (z), and
the camera focal length (f ). These parameters are constant
to the algorithm, and the effect of varying these parameters,
including the focal length, is usually negligible (see Fig. 5).

3.3 Predictions based on the analysis

The result of the sensitivity analysis for the equations de-
scribing the localization algorithm can be summarized as fol-
lows. The most important variables are those that describe
perceived size of the landmark,hp and wp. These values
depend upon aspects of the agent-environment interaction

Table 2. Illumination (in millilamberts) of the black and white regions of
the landmarks, the wall and the floor. The different conditions correspond
to different lights being turned on and off. Intervals are given, since the
illumination varies with the viewing angle

Condition Black region White region Wall Floor
Full 1.1–1.3 16.0–18.7 14.5–17.4 5.4–6.6

Partial 1.0–1.2 14.2–16.1 12.5–15.3 4.6–5.6

(i.e., task-level parameters) such as actual distance, viewing
angle, lighting conditions and motion of the agent. We also
determined bounds on the error of the localization algorithm
due to these parameters. For distance,R, error was indepen-
dent of viewing angle. We also predicted a slight tendency to
overestimateR (a positive error bias) as the actual distance
from the landmark increases. For angle,Γ , error was found
to be both distance and angle dependent, with greater sensi-
tivity near 90◦ and increasing error at larger distances. Error
in the focal length,f , and the actual height of the landmark,
hr, could cause constant biases, while other parameters have
negligible effects.

4 The experiment

The sensitivity analysis in the previous section investigated
the effect of slight perturbations of system variables on lo-
calization behavior. Such perturbations may be the result
of interaction with the environment or the result of miscal-
ibration. The analysis provided predictions regarding what
aspects of the agent-environment interaction should have the
greatest influence on performance of the localization algo-
rithm. In addition, it predicted the behavior of the algorithm
in terms of error bounds and error biases. This section de-
scribes an experiment designed to test the performance of
the algorithm in various conditions. We show that overall
the behavior of the system fulfills some predictions, yet de-
viates from these predictions in interesting and meaningful
ways.

The goal of our design was to investigate the effect
of manipulating task-level parameters, which describe the
agent-environment interaction, on the behavior of the agent.
Specifically, we investigated the effect of agent motion, ac-
tual distance, viewing angle, lighting conditions, and choice
of thresholding strategy. We kept constant such parameters
as landmark size and height, as well as focal length, height,
and tilt of the camera.

4.1 Equipment

We used a TRC Labmate robot (Fig. 6). The 17.3 mm
Cosmicar 1:1.4 lens with a Sony XC-77 CCD camera was
mounted on a turntable. We used a SunVideo digitizer with
double buffering capability allowing the parallelization of
the grabbing and the processing operations. Our landmarks
were printed in black on white paper. Their illumination in
various conditions is summarized in Table 2, together with
the data measured on the wall and on the floor. The different
conditions result from turning on and off lights in the lab.
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Fig. 4. Sensitivity ofΓ angle measurement with respect to the perceived
height,hp. Sensitivity to the perceived width,wp, is similar, with opposite
sign

Fig. 5a,b.Jacobian ofγ angle measurement. The sensitivity of the distance
measurement with respect to five parameters as a function of distance at
45◦ (a) and as a function of angle at 4 m (b). Cross-sections of the 3D
sensitivity plots are shown

Fig. 6. The TRC Labmate robot used throughout the experiments, and a
landmark on the wall. The top camera on the turntable was used

Fig. 7. Top view of the four experimental trails corresponding to theΓ
angles of 26◦, 45◦, 70◦, and 90◦. The agent moves along thedotted line,
continuously maintaining theΓ angle relative to the plane of the landmark
(dashed line). Measurements are taken at meter distances on the path (ticks)

4.2 Algorithm

The algorithm first grabs a 640× 480 image and downsam-
ples it by 2, taking every second pixel both horizontally and
vertically. This step is followed by the gray-scale to black-
and-white conversion, which used either a constant prede-
fined threshold value of 128 or adaptive thresholding using
the average pixel intensity of the whole image. The next step

is to search for and find the landmark. The perceived size
of the landmark was to be extracted by finding the corners
of the landmark and determining the height and width as
the difference of these data, achieving accuracy of one-half
pixel. Using these data, Eqs. 1 and 4 compute the parame-
ters relative to the camera center, and these values are trans-
formed to the agent relative values using theδcam parameter
(the angle between the camera and the heading direction of
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the agent). The camera is mounted on a turntable and the
value ofδcam is provided by the odometry of the turntable.
According to our measurements, this odometry reading is
very reliable, it remained within±0.5◦ even after very long
test sequences.

The algorithm ran on a SPARCstation 2. One cycle of the
algorithm, that is, grabbing an image, converting from gray-
scale, recognizing the landmark, and determining the camera
relative position of the landmark, took 0.28 s and 0.31 s for
the constant and adaptive thresholding, respectively, when
not using the parallel feature of the frame grabber, and 0.21 s
and 0.24 s, respectively, when grabbing and processing were
performed in parallel.

4.3 Experimental design

The experimental design was a 4× 4 × 2 × 2 × 2 facto-
rial design with repeated measures. The independent vari-
ables corresponded to task-level parameters that describe
the agent-environment interaction, specifically: actual dis-
tance, viewing angle, agent motion, and lighting conditions.
Thresholding strategy provided the fifth independent vari-
able.

The specifics of the design reflected a combination of
theoretical and practical considerations. First, we took mea-
surements at four distances (R = 2, 3, 4, and 5 m). Distance
was sampled linearly because the effects that were predicted
to be most important by our analysis were nearly linear in
distance. The range of distances was limited by the size of
our laboratory on the one hand, and by the fact that camera
blur becomes a strong effect at distances closer than 2 m.
Next, we used four levels of viewing angle (Γ = 26◦, 45◦,
70◦, and 90◦). Viewing angles were selected so that all dif-
ferent regions of the predicted error curve were sampled.
Smaller angles were constrained by the size of the agent
and the minimum distance. Two levels of motion (at rest
and in motion) were used to demonstrate qualitatively that
motion is an important factor, without determining the dif-
ferential effect of velocity. Measurements were taken using
two different types of threshold (constant and adaptive). Our
main goal here was to show that internal properties of the
algorithm influence the results not merely in a binary fash-
ion (e.g., in dim light adaptive thresholding must be used),
rather, as we shall see, threshold type makes a difference
even in bright light. Finally, two levels of lighting (full and
partial) were used. The number of lighting levels were con-
strained by the fact that constant thresholding did not pro-
duce reliable landmark recognition at dimmer lighting levels.

Two dependent measures were taken at each point, error
in estimated distance (as percentage of actual distance) and
error in estimated angle (degrees). We repeated each per-
formance measurement four times. The number of measure-
ments required can be estimated in advance by estimating
both the size of each predicted effect and the expected er-
ror variance [15]. The actual number that we estimated was
considerably larger than four, and carrying out these exper-
iments is very expensive in terms of time. Thus in order
to minimize resource utilzation we measured actual effect
size and error variance as the experiment proceeded using a
post hoc power analysis, reported below, to determine when

enough measurements had been taken. We were therefore
able to detect most of the phenomena of interest without
consuming an inordinate amount of resources.

4.4 Method and procedure

Measurements were taken at four different distances,R, and
4 differentΓ angles, as illustrated in Fig. 7, both when the
agent was at rest, and when it was in motion, in two differ-
ent lighting conditions, and using two different gray-scale
to black-and-white thresholdings. Each angle corresponded
to a path: one set of measurements was taken moving along
a path, moving the agent either away from or toward the
landmark while maintaining a constant angle. To ensure a
straight-line motion, before each run the agent was posi-
tioned at either end of the path at the required angle, with
the caster wheels aligned. At each position the image was
stored and processed off-line with the two different thresh-
olding algorithms. Actual distance was measured manually
using a metal measuring tape. Viewing angles were mea-
sured using triangulation. For each type of data, that is, at a
given distance, angle, light, thresholding, motion combina-
tion, we made four measurements.

For the at-rest measurements the agent was moved along
each path to the required distance, and two images were
stored, one under each lighting condition. The agent was then
moved to the next distance, and the images were recorded.
The agent was run four times along each path. Recordings
were also made while the agent was moving with a constant
speed of 100 mm/sec. In this case the agent was positioned
at either end of the path with its caster wheels aligned, but
outside of the measurement area, for example 1.5 m from
the landmark. It began moving, storing the images at each
meter. For this we relied on the odometry readings of the
agent, corrected by manual measurement of the actual dis-
tance traveled. The agent was run eight times along each
path, four times per lighting condition.

4.5 Results

To determine the systematic effects of environmental manip-
ulations on the agent’s estimates of relative location, a first
analysis of variance (ANOVA) [15] was performed on mea-
sured errors in distance estimates,R and a second ANOVA
was performed on the measured error in angle estimates,Γ .
Analysis of variance is typically performed to control type
I error, or α, the probability of reporting an effect as sig-
nificant when none actually exists. Below we report theF
ratio (roughly, the ratio of effects due to manipulation of the
independent variables to the experimental error).F ratios
near 1 imply no effect of the manipulation whereas those
greater than 1 imply some effect. We also report the signifi-
cance level of theF ratio, the probability,p, of type I error
in comparison to a predeterminedα level (e.g.,α = 0.05, a
typically reported criterion level for statistical significance).
Associated with eachF ratio are two degrees of freedom,
describing the shape of theF distribution.

Next we performed a post-hoc power analysis [15] to
determine the size of each effect and thepower of our ex-
periment to detect each effect. The power analysis allows
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Fig. 8a–c.Main effects for distance estimation

Fig. 9a–c.Two-way interactions for distance estimation
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us to also measure type II error, orβ, the probability of
reporting no effect when one actually exists. Thus, we re-
port not onlyF ratios and their associated significance lev-
els (α values) but alsoeffect size(ω2) and power (1− β).
Effect size reflects the proportion of variance (due both to
experimental manipulations and to inconsistency in agent
performance) that can be attributed to differences in exper-
imentally manipulated conditions; in our case it reflects the
proportion of overall variance accounted for by manipulat-
ing the task-level parameters. Below, we report all effects
for which ω2 > 0.10. These are either main effects (signif-
icant difference in performance caused by the manipulation
of a single independent variable), or interactions (one of the
independent variables does not have a constant effect at all
levels of the other independent variable). We first discuss
the effects of the experimental manipulations on estimation
of distanceR and then on estimation of angleΓ .

In both cases the data displayed marked heterogeneity of
variance, thus we performed a Geisser-Greenhouse correc-
tion to determine statistical significance of theF ratios from
both analyses. The Geisser-Greenhouse correction assumes
maximal heterogeneity of variance [16]; this conservative
approach seemed warranted given the large degree of het-
erogeneity observed.

Accuracy of distance estimation.The analysis turned up a
number of significant effects which show the importance
of agent-environment interaction in determining the ability
of the agent to estimate distance from a landmark. Table 3
reports all effects for whichω2 > 0.10, i.e., those which
account for at least 10% of the variance in their respective
measurements. We first discuss effects that were found to be
statistically significant, and then we discuss power for one
effect that was found not to be significant.

The significant main effects are shown in Fig. 8. First,
we found a main effect of distance (F3,9 = 7.239, P < 0.10).
This confirms the predictions of the sensitivity analysis for a
positive error bias that increases with distance. However, at
the closest distance, we see a slight negative bias; this could
reflect a constant bias introduced, for example, by a slight
miscalibration off or hr. Next, there was an even stronger
main effect of motion (F1,3 = 12.078, P < 0.05). In gen-
eral, the agent estimated distance quite accurately when at
rest, but overestimated distance when in motion. Finally,
the strongest main effect was that of threshold (gray-scale
conversion type;F1,3 = 29.060, P < 0.05). Not surprisingly,
the agent was significantly more accurate in determining dis-
tance using the adaptive than the constant threshold.

Next, three two-way interactions were found to be sig-
nificant, showing that a combination of factors can conspire
to influence agent performance. The largest of these was
a strong interaction between motion and threshold (F1,3 =
53.358, P < 0.01; Fig. 9a). This indicates that the agent es-
timates distance very accurately when at rest, and that the
type of threshold helps very little if at all. However, adap-
tive thresholding helps significantly when the agent is in
motion. Second, there was an interaction between distance
and threshold (F3,9 = 15.711, P < 0.05; Fig. 9b). The adap-
tive threshold produces a negative bias when the agent is
close to the landmark but more accurate results at interme-

diate distances. At a distance of 5 m, the two methods show
little difference. This could be due to projection and illumi-
nation effects, so that at 5 m contrast is not helping. Third,
we found an interaction between angle and lighting condi-
tion (F3,9 = 7.371, P < 0.05; Fig. 9c). This interaction is
more difficult to interpret since the pattern of sensitivity dif-
fers depending upon the lighting, but it appears that under
conditions of full lighting the system is more sensitive to
oblique angles. This may be due to the angle dependence of
the illumination and the interplay of the projection and the
illumination effects.

Additionally, we found two large three-way interactions.
Of these, the interaction among motion, lighting and thresh-
old was the strongest (F1,3 = 44.981, P < 0.01; Fig. 10).
Here lighting level can be seen to modulate the interaction
observed between motion and threshold. Adaptive thresh-
olding helps the agent more in partial than in full lighting
conditions. The three-way interaction among motion, angle,
and lighting was also quite strong (F3,9 = 28.779, P < 0.01;
Fig. 11). One can see from Fig. 11 that motion modulates the
basic two-way interaction (above) between angle and light-
ing. When at rest, in both full and partial lighting conditions,
the agent is very accurate in estimating distances. When in
motion, however, lighting makes a rather large difference in
the agent’s performance; thus the interaction between angle
and lighting affects the agent mainly when in motion.

We also briefly address the issue of an effect that was
not statistically significant, an effect of viewing angle on the
agent’s errors in estimating distance. Although this was not
predicted by the theoretical model of the previous section,
Table 3 reveals that the effect of angle is rather large (ω2 =
0.3988) and approaches significance (F = 4.583, P < 0.25);
remember that our choice of the Geisser-Greenhouse correc-
tion for heterogeneity of variance is a very conservative one.
Looking at the power for the distance effect (Table 3), one
can see that given the number of observations (four) and
the variance in these measurements, we had approximately
a 76% chance of observing such an effect if it indeed exists.
We estimate that detecting this effect would require several
additional observations; for example, an additional five ob-
servations would virtually ensure detection of any effect of
viewing angle (1−β > 0.99). Nevertheless, we decided that
detection of this effect did not justify the additional resources
required.

Finally, we consider how the agent fared in terms of
performing within predicted error bounds. Figure 12 shows
performance of the resting vs. moving agent, plotted against
the bounds predicted under the assumption of a 1-pixel er-
ror. As we can see, the means all fall within the predicted
bounds, and standard deviations fall more or less within the
bounds as well. Deviations from the predictions occur at
closer distances, however, implying errors greater than 1-
pixel in calculating perceived height. In addition, the error
bars also give an indication of the heterogeneity of vari-
ance that required the Geisser-Greenhouse correction to our
ANOVA results.

Accuracy of angle estimation.This analysis turned up a
number of significant effects which show the importance of
agent-environment interaction in determining the ability of
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Table 3. Statistically significant and marginally significant effects for distance estima-
tion after application of Geisser-Greenhouse correction for heterogeneity of variance.
Reported are all effects whose size (ω2) was greater than 0.10 as determined by a
post-hoc power analysis

Effect F ratio Effect size (ω2) Power(1− β)
Distance 7.239 * 0.5391 0.96
Movement 12.078 ** 0.5807 0.98
Threshold 29.060 ** 0.7781 >0.99
Movement× threshold 53.358 *** 0.7659 >0.99
Distance× threshold 15.711 ** 0.5797 0.98
Angle× lighting 7.371 * 0.3739 0.72
Move× light × threshold 44.981 *** 0.4073 0.78
Move× angle× light 28.779 ** 0.5656 0.98
Angle 4.538 + 0.3988 0.76
Angle× threshold 2.732 + 0.1397 <0.30
Angle× light × threshold 3.375 + 0.1002 <0.30

Significant effects: *P < 0.10; ** P < 0.05; *** P < 0.01. Marginally significant
effects: +P < 0.25

10a

10b

11a

11b

Fig. 10. Three-way interaction for distance estimation: movement× lighting × threshold

Fig. 11. Three-way interaction for distance estimation: movement× angle× lighting
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13a

13b

Fig. 12. Theoretically determined error bound (due to 1 pixel error) on
distance computation together with the measured data

Fig. 13a,b.Main effects for angle estimation

the agent to estimate relative angle with the landmark. Table
4 reports all effects for whichω2 > 0.10, i.e., those which
account for at least 10% of the variance in their respec-
tive measurements. Overall, the analysis of angle estimation
accuracy turned up fewer and smaller effects than did the
analysis of distance estimation errors, due mainly to higher
variance in angle estimation errors. We first discuss effects
that were found to be statistically significant, and then we
discuss power for one effect that was not found to be sig-
nificant.

We found two main effects (Fig. 13). The first was a
significant effect of lighting (F1,3 = 37.695, P < 0.05).
The agent was significantly more accurate in estimating
angle in the full lighting condition. In addition, there was
also a significant effect of gray-scale conversion algorithm
(F1,3 = 11.052, P < 0.10). As with distance estimation, the
agent was more accurate in estimating pose angle using the
adaptive thresholding algorithm.

In addition, we found five two-way interactions (Fig. 14).
First, we found a significant interaction between distance
and lighting (F3,9 = 31.592, P < 0.05). Under full lighting
conditions the agent is more accurate at estimating pose an-
gle, although the pattern of biases is somewhat difficult to
interpret. In partial lighting the agent is not as successful
and actually improves with distance. Second, we found a
significant interaction between lighting condition and move-
ment (F1,3 = 18.716, P < 0.05). When at rest the agent
is quite accurate in estimating pose angle, whereas lighting
conditions strongly affect the behavior of the moving agent.
Third, we found a significant interaction between movement
and distance (F3,9 = 14.122, P < 0.05). This interaction
shows differing patterns of sensitivity to distance depending
upon whether the agent is in motion.

Fourth, we found a significant interaction between move-
ment and threshold (F1,3 = 12.067, P < 0.05). The adaptive
threshold improves performance when the agent is moving
but does not improve performance when the agent is at rest.
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14b 14e
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Fig. 14a–e.Two-way interactions for angle estimation
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Table 4.Statistically significant and marginally significant effects for angle estimation af-
ter application of Geisser-Greenhouse correction for heterogeneity of variance. Reported
are all effects whose size (ω2) was greater than 0.10, as determined by a post-hoc power
analysis

Effect F ratio Effect size (ω2) Power(1− β)
Lighting 37.695 *** 0.8210 >0.99
Threshold 11.052 ** 0.5568 0.97
Distance× lighting 31.592 ** 0.7415 >0.99
Movement× lighting 18.716 ** 0.5254 0.95
Movement× distance 14.122 ** 0.5516 0.96
Movement× threshold 12.067 ** 0.4089 0.78
Angle× threshold 7.795 * 0.3891 0.76
Move× distance× light 9.274 * 0.2795 0.50
Distance 3.963 + 0.3571 0.68
Move× distance× angle 3.253 + 0.1368 <0.30
Distance× angle× light 3.355 + 0.1421 <0.30
Distance× angle× threshold 4.249 + 0.1860 <0.30

Significant effects: *P < 0.10; ** P < 0.05; *** P < 0.01. Marginally significant
effects: +P < 0.25

Fifth, there was a small but significant interaction between
angle and threshold (F1,3 = 7.795, P < 0.10). The con-
stant threshold algorithm appears to be more sensitive to the
viewing angle.

Finally, we discovered a three-way interaction among
movement, distance, and lighting (Fig. 15). While the precise
nature of the interaction is difficult to interpret, it seems
to indicate that the agent’s sensitivity to distance is most
relevant when the agent is in motion and in partial lighting
conditions.

Next, we discuss the effects not observed in this experi-
ment. Most interestingly, significant main effects of neither
distance nor viewing angle on estimation ofΓ were ob-
served. To be sure, the theoretical analysis did not predict
any bias; nevertheless it did predict great deal of sensitivity
to these parameters. A relatively large but nonsignificant ef-
fect of distance does appear in Table 4. However, the post
hoc power analysis revealed that this experiment had only a
68% chance of detecting this effect. Several additional ob-
servations may have shown this effect to be significant; nine
observations would have provided a 97% chance of detect-
ing this effect. Distance was also a factor in two interactions,
probably as a result of the algorithm’s sensitivity to this pa-
rameter. Additionally, the significant angle× threshold in-
teraction was probably due to the algorithm’s sensitivity to
viewing angle in addition to the overall large biasing effect
of threshold. Thus, estimation of viewing angle reveals sen-
sitivity to distance and viewing angle but little if any bias.

Finally, we consider performance with respect to pre-
dicted error bounds. Figure 16 shows performance at rest
vs. in motion, plotted against the bounds by the sensitiv-
ity analysis. All means fall within the predicted bounds, al-
though not all standard deviations respect predictions. The
figure also shows marked heterogeneity of variance among
different conditions.

4.6 Discussion

Our empirical investigation uncovered a number of impor-
tant facts about the performance of the agent in a realistic
setting. First, we were able to verify the performance of

the agent’s vision algorithm. Comparison of the theoretical
bounds on error performance with the standard deviations
observed in the experiment showed that the agent does in-
deed perform within the predicted bounds. Although this
may not seem surprising, it is quite important given the num-
ber and the complexity of effects that the agent-environment
interaction was shown to have upon performance.

We found a main effect of actual distance on distance
estimation. This matched our theoretical prediction of posi-
tive error bias in the estimation of distance. In addition, the
importance of lighting level, both as a main effect in angle
estimation and as a factor in statistical interactions in estima-
tion of both parameters, is interesting especially since it was
not addressed in the theoretical analysis. These results em-
phasize the basic soundness of this approach to combining
theoretical analysis with empirical testing. They underscore
the importance of empircal experimentation both to validate
existing theoretical models and also to help create them.

The most critical aspect of agent-environment interac-
tion to influence the performance of the vision algorithm
was motion of the agent. The agent performed quite well
when at rest but less well when in motion. This conclusion
is supported by a significant main effect of motion, accom-
panied by increased variability, in distance estimation errors.
We identified a significant overestimation of distance when
the agent was in motion. In addition, motion participated
in statistical interactions, for estimates of both distance and
angle. Motion decreased performance when the going got
tougher for the agent, in particular under conditions of de-
graded lighting, when angles were far from 90◦, and when
the less reliable constant thresholding algorithm was used.
This finding is crucial because in typical behavioral situa-
tions either the agent, the landmark, or both are moving.

Another important factor in vision algorithm perfor-
mance was thresholding strategy, constant versus adaptive.
Perhaps not surprisingly, the adaptive thresholding algorithm
consistently outperformed the constant threshold strategy,
the latter introducing a significant bias in estimation of both
parameters. In addition, this factor interacted statistically
with environmental factors: the adaptive thresholding algo-
rithm helped more under poorer illumination and when the
agent was in motion.
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15a

15b

16a
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Fig. 15a,b.Three-way interaction for angle estimation: movement× distance× lighting

Fig. 16a,b. Theoretically determined error bound on angle computation together with the measured data.a Bound on measurements at 70◦ Γ angle.b
Bound on measurements atR = 5 m distance

Finally, and perhaps most importantly, we have shown
that the variables that change during dynamic interaction
with the environment produce effects that interact, conspir-
ing to effect the performance of the agent in complex ways.
Although our theoretical analysis hinted at the presence of
these effects, it was not able to predict precisely what they
would be. This points to the importance of actually per-
forming empirical evaluations such as this. The complexity
of agent-environment interaction can have systematic effect
on the performance of the agent that may be quite subtle
and difficult to predict, even givena priori knowledge of
the construction of the autonomous agent.

5 Conclusions

The goal of this study was to put forward a methodology
for prediction and verification of the performance of robotic
agents that act in partially unknown and ever-changing en-
vironments. Robotic agents are not “black boxes”; we have
known parametric models because they are synthetic. The
only source of uncertainty comes from the physics of the
component devices: dark current in the CCD camera, friction
in gears, and so on. Fortunately, such effects tend to be small,
and we understand well how to model them. A far more im-
portant source of variability, however, arises from the inter-
action of the agent with an unknown and ever-changing envi-
ronment. As we have shown, some aspects of this interaction
have systematic effects on agent performance, other aspects
are best modeled as stochastic processes. Our methodology
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consists both of theoretical analysis and empirical experi-
ment. We address the basic methodological question of how
well we can model the agent-environment interaction based
on physics and geometry, what factors are best explored by
empirical experimentation, and how analysis and experime-
nation can interact. It is this conceptual separation between
agent and environment, along with an analysis of their in-
teraction, that we believe is our contribution.

We selected a relatively constrained yet nontrivial task:
vision-based localization of a robotic agent. We modeled the
agent in terms of its visual capabilities, such as position and
orientation of its camera system, overall height, speed of
movement, and so forth. The environment is modeled as a
set of landmarks with known visual/geometric characteris-
tics. The interaction of the agent vis-a-vis its environment
is characterized by the parametersR and Γ that describe
the location of the agent relative to the landmarks. We de-
rive analytic functions describing the interaction because of
the constrained nature of the task. In our analysis of per-
formance we restricted ourselves to task-level parameters,
assuming successful landmark detection.

Questions in such empirical evaluation include: how
many experimental conditions must one consider, and how
many observations must one perform in order to validate
the model? We have seen that in the robotic agent con-
text the number of experimental conditions is determined
by the number of task-level parameters and combinations
of parameters. These limits serve to constrain the task level
parameter space, and the experiments can be viewed as a
search in this constraint space. However, it is the analysis
of variance (Sect. 4) that reveals how many of the task-level
parameters are dependent or independent. The dependency
increases the dimensionality (one must consider their com-
binations) of the task-level parameter space. Thus it may
be necessary to consider complex factorial designs as we
present above.

In theory the number of required observations may be
estimated using the error bounds and biases predicted by
a sensitivity analysis. However, the actual spread (standard
deviation) of the empirical error distributions is the real de-
terminant governing the number of observations required.
In addition, the cost of performing each observation is an
important factor in determining how many observations to
take, especially when running a complex factorial design.
Such considerations point to a predict-experiment loop to
determine the true nature of the agent-environment inter-
action, in which the post hoc power analysis plays an im-
portant role. In our experiment we performed the number
of observations necessary to unambiguously detect most of
the phenomena of interest, without consuming an inordinate
amount of resources.

The results obtained in the analysis of variance led to
some expected and some unexpected conclusions. For ex-
ample, we anticipated that adaptive thresholding would im-
prove overall performance somewhat and even more under
conditions of partial illumination. We did not necessarily
anticipate that adaptive thresholding would improve the per-
formance of the agent so much more when in motion than
when the agent was at rest.

The results of the analysis regarding the effects of mo-
tion were in general more difficult to predict. Although we

anticipated that a somewhat larger error variance would re-
sult from motion, it was rather surprising to observe large
systematic effects of motion on agent behavior. It is impor-
tant to point out that these effects were not anticipated by
the sensitivity analysis, indeed theoretically the agent should
perform similarly in the two cases.

In addition, the sensitivity analysis did not predict the
dependencies among task-level parameters. In the empirical
analysis, however, these dependencies showed up as statis-
tical interactions, giving some insight into how task-level
parameters combine to determine performance. In princi-
ple, predictions of such dependencies may be difficult to
makea priori because purely analytical tools are not always
sophisticated enough to account for the complexity of the
agent-environment interaction.

The methodology can be summarized as a cycle [17],
first determining the parameters of the system (parameter-
ization), then making predictions based on a model of the
system (forward problem), and finally observing actual be-
havior in experiments and verifying, or updating the model
based on these results (inverse problem). These considera-
tions point to the need for empirical performance analysis,
not simply to verify models of performance, but to help
design them. Hence experimentation is crucial to complete
analysis of any robotic system.

Ultimately we expect such performance analyses to lead
to the development of self diagnostic procedures for agents
that act in partially known, dynamic environments. Forstner
[18] has advocated the development of such self-diagnostic
programs, which he calls “traffic light programs”. A traffic
light program signals “green” if the result is correct, “yel-
low” if it may be correct but needs checking, and “red” if
it is incorrect or no result is produced. Examples of factors
that might cause “yellow” signals in localization are lighting
level, agent speed, and distance from the landmark. Know-
ing the limitations of the agent by exploring the parameters
and interactions which have the most significant influence
on behavior will allow us to develop such procedures.

In the limit, we envision that a fully developed under-
standing of such performance analysis methodologies will
enable the construction of autonomous agents that are able
to carry out sophisticated analyses of their interactions with
unknown environments. Such a system would be able to de-
velop knowledge of significant dependencies and alert itself
when to be more or less cautious in its environment. Such
systems would be truly flexible and robust to complex sets
of changes in environmental situations. The current study is
but a first step toward this goal.
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Appendix

Here we derive Eqs. 1–5, used to compute the position of
the landmark relative to the agent.
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Fig. 17. The top view of the setup: the plane crosses the camera center and the center line of the bar.Thick linedenotes the bar

Fig. 18. The image of the landmark on the CCD array (top view)

Fig. 19. The view of the setup from the side.Thick line represents the landmark

Figure 17 shows the top view of the setup (the meaning
of the variables is explained in Table 1):

Law of cosine for4ACL :
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r1 sinα1 + r2 sinα2
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Area of4: AABL=AACL+ABCL:

r1r2 sinαwp = r1r sinα1 + r2r sinα2 (A-9)
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γ = 90− β :

γ = arccos
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r
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Using the following equations tanαwp can easily be deter-
mined (see Fig. 18):

4EFL: tanα =
wd
f

(A-13)

4DFL: tan
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f
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Trigonometry :
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(
α + αwp

)
=

tanα + tanαwp
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(A − 13), (A − 14), (A − 15) :

tanαwp =
fwp

f2 + wd
(
wp + wd

) (A-16)

Since the landmarks are at a fixed height relative to the cam-
era, this information can be used to determine the distance

to the landmark (see Fig. 19).

(A − 12) vertically :
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)
4GHL: sinγh =
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sin2 γh + cos2 γh = 1:
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[
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±
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h2
r

]
Finally, the three required parameters can be determined
from the above equations:

R =
√
r2 − z2

Γ = γ − αwc + δcam + 90

θ = δcam − αwc
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Péter L. Venetianer received the MS degree in computer science from the
Technical University of Budapest in 1992 and the PhD degree in 1996. His
doctoral work at the Computer and Automation Institute of the Hungarian
Academy of Sciences focused on theoretical capabilities and applications
of cellular neural/nonlinear networks. He is currently a Postdoctoral Fellow
at the GRASP Laboratory at the University of Pennsylvania. His research
interests include computer and machine vision, visual communication and
coordination between multiple agents.

Edward Large studied mathematics and music performance as an under-
graduate, receiving a diploma in mathematics from Southern Methodist
University in 1982. He worked for several years in the United States and
then in Japan before returning to graduate studies. His doctoral work at
the Ohio State University concentrated on artificial intelligence, cognitive
psychology, and the theory of computation. He received a PhD in Com-
puter and Information Science in 1994. His dissertation centered on music
perception and cognition and included both experimentation and modeling
using nonlinear dynamical systems and neural networks. His research in-
terests include the dynamics of human perception, action, and cognition,
and the design of autonomous agents utilizing dynamical principles. He is
currently a Postdoctoral Fellow at the Institute for Research in Cognitive
Science and the GRASP Laboratory at the University of Pennsylvania.

Ruzena Bajcsyreceived a PhD in Electrical Engineering from the Slovak
Technical University in Bratislava, Slovakia, in 1967 and a PhD in Com-
puter Science from Stanford University in 1972. A faculty member of the
University of Pennsylvania since 1972, Professor Bajcsy has covered the
spectrum of problems involved in the field of computer vision. In 1983
she introduced the research paradigm of active perception, which connects
perception with action. Recently she has been investigating cooperative
behaviors between machines and humans. Professor Bajcsy’s professional
services to the community include: member of the NRC Computer Sci-
ence and Telecommunication Board; advisory board member for the NSF
Engineering and CISE Directorates; and member of the CRA Board of Di-
rectors. She is a Fellow of AAAI, ACM, IEEE, and the NAS Institute of
Medicine.


