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ABSTRACT 

Pulse and meter are remarkable in part because these 
perceived periodicities can arise from rhythmic stimuli that 
are not periodic. This phenomenon is most striking in 
syncopated rhythms, found in many genres of music, 
including music of non-Western cultures. In general, 
syncopated rhythms may have energy at frequencies that do 
not correspond to perceived pulse or meter, and perceived  
metrical frequencies that are weak or absent in the objective 
rhythmic stimulus. In this paper, we consider syncopated 
rhythms that contain little or no energy at the pulse 
frequency. We used 16 rhythms (3 simple, 13 syncopated) 
to test a model of pulse/meter perception based on 
nonlinear resonance, comparing the nonlinear resonance 
model with a linear analysis. Both models displayed the 
ability to differentiate between duple and triple meters, 
however, only the nonlinear model exhibited resonance at 
the pulse frequency for the most challenging syncopated 
rhythms. This result suggests that nonlinear resonance may 
provide a viable approach to pulse detection in syncopated 
rhythms. 

1. INTRODUCTION 

Pulse is a periodicity perceived in a musical rhythm, 
operationally defined as the frequency at which one would 
most likely tap along to a rhythm [11].  People also 
perceive meter, a structural pattern of accents among beats 
of the pulse [10]. Pulse and meter can be diagrammed  
using the notation of Lerdahl and Jackendoff [10], in which 
the metrical grid is composed of beats at multiple related 
frequencies, with strong beats occurring when beats at 
multiple frequencies overlap in time.  Thus meter organizes 
beats of the pulse into strong beats and weak beats. 

In simple rhythms (Figure 1a), note-events occur on 
strong beats.  Rhythms such as the 3-2 Rumba Clave 
(Figure 1b), although they share the same nominal metrical 
structure, are more complex.  In such rhythms, note-events 
occur on metrically weak beats, and strong metrical beats 

often correspond to silences. These two attributes define 
syncopation [3, 12]. Thus, in syncopated rhythms note 
events are spaced irregularly in time, yet the perceived 
pulse is regularly timed, and the meter, regularly structured 
[3, 14]. A goal of theories of pulse perception is to explain 
how pulse and meter are perceived for musical rhythms in 
general, and for syncopated rhythms in particular.   

 

Figure 1. Example rhythms and metrical grid. 

Our approach is based on the idea that the pulse 
percieved in a musical rhythm is a neural resonance that 
arises in sensory [6, 8, 17] and motor cortices [2, 4]. The 
experience of meter is posited to arise from interaction of 
neural resonances at differenct frequencies. In this paper we 
put forth a neurodynamic model of pulse and meter and ask 
whether it can explain the perception of pulse and meter in 
highly syncopated rhythms.  

1.1 Neural Oscillation 

Neural oscillation can arise from the interaction between 
excitatory and inhibitory neural populations. The canonical 
model used here was derived, using normal form theory, 
from the Wilson-Cowan model of the interaction between 
excitatory and inhibitory neural populations [7, 18]. This 
model is generic, however, so the responses of the model to 
musical rhythm are likely to be observed in many other 
nonlinear oscillator models of rhythm perception. 
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1.2 Model 

Our conceptual model is a network of neural oscillators, 
spanning a range of natural frequencies, stimulated with an 
auditory rhythm. The basic concept is similar to signal 
processing by a bank of linear filters [15], but with the 
important difference that the processing units are nonlinear, 
rather than linear resonators. 

We can describe the behavior of a linear filter using a 
differential equation (Eq 1), where the overdot denotes 
differentiation with respect to time.  z is a complex-valued 
state variable; ω is radian frequency. α < 0 is a linear 
damping parameter. x(t) denotes linear forcing by a time-
varying external signal. 

  (1) 

Because z is a complex variable, it has both amplitude and 
phase.  Resonance in a linear system means that the system 
oscillates at the frequency of stimulation, with amplitude 
and phase determined by system parameters. As stimulus 
frequency, ω0, approaches the oscillator frequency, ω, 
oscillator amplitude, r = |z|, increases, providing band-pass 
filtering behavior. In the linear case, oscillator amplitude 
depends linearly on stimulus amplitude. 

A common model of nonlinear oscillation is based on 
the normal form for the Hopf bifurcation (Eq 2).   

  (2) 

Note the surface similarities between this form and the 
linear resonator of Equation 1.  Equation 2 can be seen as a 
generalization of Equation 1, and the two behave the same 
when β= 0. Again ω is radian frequency, and α is still a 
linear damping parameter.  β < 0 is a nonlinear damping 
parameter, which maintains stability when α > 0. x(t) 
denotes linear forcing by an external signal. The term h.o.t. 
denotes higher-order terms of the nonlinear expansion that 
are truncated (i.e., ignored) in normal form models. When 
α = 0 and β < 0, the system is said to be in the critical 
parameter regime, poised between damped and spontaneous 
oscillation. The amplitude of the response depends 
nonlinearly on the input amplitude. Like linear resonators, 
nonlinear oscillators have a filtering behavior, responding 
maximally to stimuli near their own frequency. Differences 
in behavior include extreme sensitivity to weak signals and 
high frequency selectivity. Critical oscillators have been 

used to model critical oscillations of outer hair cells in the 
cochlea [5]. When α > 0 (and β < 0), the system exhibits a 
limit cycle in absence of input; thus, it can oscillate 
spontaneously.  

Our canonical model [7] (Eq 3) is an expansion of the 
Hopf normal form (Eq 2), which includes higher order 
terms.   

(3) 

There are again surface similarities with the previous 
models. The parameters, ω, α and β1 correspond to the 
parameters of the truncated model. β2 is an additional 
amplitude compression parameter, and c represents strength 
of coupling to the external stimulus. δ 1 and δ 2 are 
frequency detuning parameters. The parameter ε controls 
the amount of nonlinearity in the system. Most importantly, 
coupling to a stimulus is nonlinear and has a passive part, 
P(ε, x(t)) and an active part, A(ε, z), as defined in [7], 
which produce different higher order resonances, as 
described in the next section. 

1.3 Properties of Nonlinear Resonance 
Equation 3 displays all the behavioral regimes  

described above –  linear, critical and limit cycle –
depending on the parameter values chosen. Additionally, 
Equation 3 can also exhibit a double-limit cycle bifurcation, 
when α < 0, β1> 0, β2 < 0 (and ε > 0). Stable states emerge 
at rest and at a stable limit cycle; an unstable limit cycle 
separates the two, functioning as a kind of threshold.  If the 
stimulus is strong enough, the threshold will be crossed, the 
system reaches the stable limit cycle, and oscillation can be 
maintained even after the stimulus has ceased.  Thus an 
oscillator operating in a double-limit cycle regime can 
maintain a memory of an oscillating stimulus.  

Higher-order resonance means that a nonlinear 
oscillator with frequency f responds to harmonics (2f, 3f, ...), 
subharmonics (f/2, f/3, ...) and integer ratios (2f/3, 3f/4, ...) 
of f. If a stimulus contains multiple frequencies, a nonlinear 
oscillator will respond at combination frequencies (f2 - f1, 
2f1 - f2, ...) as well. Higher order resonances follow orderly 
relationships and can be predicted given stimulus 
amplitudes, frequencies and phases. This has important 
implications for understanding the behavior of such 
systems. The nonlinear oscillator network does not merely 
transduce signals; it adds frequency information, which can 
be used to model pattern recognition and pattern 
completion, among other things. Neural pattern completion 
based on nonlinear resonance may explain the perception of 
pulse and meter in syncopated rhythmic patterns [9, 13].  

ż = z(α + iω) + x(t)

ż = z(α + iω + β|z|2) + x(t) + h.o.t.
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Our hypothesis is that in rhythms with no energy at the 
pulse frequency, pulse arises due to nonlinear resonance in 
the brain. Significant contributions may also come from 
instrinsic dynamics and learned connectivity. As a first test 
of this hypothesis, we ask whether such resonances arise in 
a canonical nonlinear model. 

2. EXPERIMENT 1 

The first experiment compared the objective frequency 
content of 16 rhythms with the frequency responses of a 
nonlinear oscillator network. Using Fourier analysis we 
measured the frequency content of the rhythmic patterns, 
showing that in syncopated rhythms the pulse frequency is 
weak or absent. Next, we assessed whether nonlinear 
resonance could explain the perception of pulse and meter 
at the frequencies that are predicted by music theoretic 
analysis of these rhythms.  

2.1 Model  

Our model consisted of a single network of 289 oscillators 
described by Equation 3, with natural frequencies 
logarithmically spaced from 0.25 Hz to 16 Hz.  The model 
operated in a critical parameter regime (α = 0, β1 = -1,  
β2 = -0.25, and ε = 1), poised between damped and 
spontaneous oscillation.   

2.2 Stimuli 

We used 16 rhythms: one isochronous pulse train, two 
canonical metrical rhythms (3/4 and 4/4), three clave 
rhythms, and ten “missing pulse” rhythms that were created 
in our lab in the context of a previous experiment [1]. The 
clave rhythms were a 3-2 Son Clave, a Rumba Clave, and a 
clave-like rhythm we dubbed ‘Hard Clave’. The ten 
missing pulse rhythms were structured so as to balance 
strong and weak beats, with four events on strong beats and 
four events on weak beats. In a previous experiment we 
observed that most people reliably tap at the nominal pulse 
frequency for these rhythms. We rendered each rhythmic 
event as a continuous time onset ‘bump’ with amplitude 
corresponding to the intensity of the event. All events were 
of equal intensity, except for the metrical rhythms, where 
intensity differences marked canonical metrical accents.  
All rhythms were rendered at a tempo of 120 bpm, making 
the pulse frequency 2 Hz. Examples of the rhythmic stimuli 
are shown in Figure 2. 

 

Figure 2. Examples of stimuli types: Isochronous, Ca-
nonical 3/4, a Rumba Clave, and one of the ten missing 
pulse patterns.   

2.3 Method 
Computations were performed using Matlab 7.4, on a 
Macintosh Mac Pro, running Mac OS X 10.5.8. In the 
simulations, the continuous-time pulse trains were used to 
drive the network model and the resulting oscillatory output 
behavior was examined. Network behavior was evaluated 
by assessing steady state amplitude of the resonating 
oscillators. The natural frequencies of the resonating 
oscillators indicate which frequencies resonate to the input 
stimulus. 

2.4 Results 

Figure 3 compares a Fourier analysis (FFT) of four 
rhythmic input signals with the amplitude profile of the 
network of nonlinear oscillators. Oscillator natural 
frequency (Hz) runs along the x-axis, and amplitude is 
shown on the y-axis.  Musical notation above each panel 
indicates the pulse and metrical frequencies for each 
rhythm. For the isochronous rhythm, energy is present at 
the pulse frequency (2 Hz), and its harmonics. For the 
canonical rhythms, signal energy was observed at the pulse 
frequency, while the accents present in the signal 
contributed frequencies at metrical levels (subharmonics of 
the pulse). The clave rhythms all had some energy at 2 Hz;  
however, this was strongly attenuated compared to the 
energy at other nearby frequencies. Fourier analysis of the 
other ten syncopated rhythms revealed no energy at the 2 
Hz pulse frequency, while considerable energy was 
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observed at non-metrical frequencies. Note that energy was 
present at the eighth note level of 4 Hz for all rhythms. 

As illustrated in Figure 3, resonant responses were 
observed in the oscillator network at frequencies that were 
not objectively present in the stimulus rhythms. Most 
importantly, resonances were observed at the pulse 
frequency for every rhythm. Resonances were also 
observed at subharmonics of the isochronous rhythm, and 
for canonical rhythms subharmonic resonances enhanced 
the response at the metrical frequencies. For the clave 
rhythms, the response at the pulse frequency (2 Hz) was 
also enhanced relative to the Fourier amplitude. For the 
missing pulse rhythms, although there was no energy at the 
2 Hz pulse frequency, the nonlinear network responded at 
the 2 Hz pulse frequency as well as at some additional 
metrical frequencies.  

In summary, both simple and complex rhythms contain 
multiple frequencies, only some of which appear to be 
related to the meter. Simple rhythms contain frequencies 
corresponding to the pulse; however, complex syncopated 
rhythms contain little or no energy at the pulse frequency. 
This feature of complex rhythms may be problematic for 
linear filter based methods of pulse detection.  Nonlinear 
oscillators can resonate at frequencies corresponding to 
pulse and meter even when these are not objectively present 
in the input. However, the simple oscillator array 
investigated in Experiment 1 is, by itself, likely not 
sufficient to induce the pulse and meter of complex 
rhythms. While oscillators resonate at the pulse frequency, 
a number of stronger resonances are observed at 
frequencies that do not correspond to pulse or meter. In the 
next experiment, we ask whether multiple networks 
together might provide greater frequency selectivity. 

3. EXPERIMENT 2 

3.1 Stimuli & Method 

The stimuli methods used in Experiment 2 were the same as 
in Experiment 1. 

3.2 Model 

The model was based on the same oscillator equations as 
used in Experiment 1.  The key difference was that in 
Experiment 2, the model consisted of two networks 
interacting with each other.  Network 1 had the same 
parameters as used in Experiment 1. The oscillators in 
Network 2 were tuned to exhibit double limit cycle 
bifurcation behavior (α = 0.3, β1 = 1, β2 = -1, and ε = 
1), and thus exhibited both threshold and memory 
properties. 
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 Figure 3. Experiment 1 results. A subset of the rhythms 
presented with both an FFT of the stimulus (black) and the  
amplitudes of responding nonlinear oscillators (gray). 

The two networks were connected as shown in Figure 4.  
Tonotopic connections between the networks allow 
Network 1 to drive Network 2. Next, in each network, 
internal connectivity coupled patches of oscillators to other 
patches exhibiting small integer ratio frequency 
relationships, 1:3, 1:2, 1:1, 2:1, 3:1.  These connections are 
assumed to be learned by exposure to Western rhythms, in 
which duple and triple meters are common. Connectivity 
from Network 2 to Network 1 was inhibitory. 

3.3 Results 

Across the rhythms presented, Network 1 behaved similarly 
to the previous experiment, responding to frequencies 
present in the simulus rhythms, and also adding nonlinear 
resonances. Example of Network 2 responses are shown in 
Figure 5. Due to its thresholding properties, Network 2 
responded to a subset of frequencies present in the Network 
1. Importantly, Network 2 almost always responded at the 
pulse frequency. Moreover,  the amplitude at 2 Hz was 
unexpectedly strong given the relatively weak responses 
observed in Experiment 1.   

 



  
 

 

Figure 4. Network architecture for models used in both 
experiments. 

Figure 5. Results for Experiment 2. Amplitude response 
profiles for Network 1 (gray) and Network 2 (black). 
Frequencies were considered ‘active’ in Network 2 if they 
exceeded the threshold implicit in the double limit cycle 
oscillatory dynamics. Active frequencies were compared to 
metrical frequencies for each rhythm. For syncopated 
rhythms expected frequencies were the quarter note level 
(i.e., the pulse, 2 Hz), the eighth note level (4 Hz), as well 
as the half note (1 Hz) and whole note levels (0.5 Hz) for  

Table 1. Summary of results for Experiment 2.  Shaded 
cells identify frequencies which would be expected to have 
a resonance for the rhythm based on meter.  Populated cells 
(x) show which resonant frequencies were active in Net-
work 2.  

most of the rhythms (the one exception was the canonical 
3/4 rhythm, whose slower metrical frequency was 0.67 Hz). 
The results of the two-network model can be seen in Table 
1. Highlighted cells show the frequencies at which response 
peaks would be expected based on the meter. Populated 
cells show whether or not response peaks were observed at 
given frequencies. For all but one rhythm, a response was 
seen at the pulse frequency of 2 Hz. For the canonical 
rhythms, response peaks were always found at the expected 
frequencies and at no others. This set of hierarchically 
related frequencies may correspond to a perception of meter. 
For the missing pulse rhythms, response peaks were found 
most consistently at the pulse frequency and its first 
harmonic at 4 Hz. At lower frequencies, the results differed 
from standard metrical predictions. This may explain why 
people sometimes have difficulty entraining periodic taps 
with highly syncopated stimuli. In previous experiments, 
level of syncopation was found to be a good predictor of 
pulse-finding difficulty; syncopation causes off-beat taps 
and some switches between on-beat and off-beat tapping 
[14, 16].  

4. DISCUSSION 

Syncopated rhythms present challenges for pulse 
detection algorithms. Looked at in the frequency domain, 
some syncopated rhythms do not contain any energy at the 
frequency of the pulse. Yet pulse is readily perceived in 
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Stimuli Network 2 Active Frequencies (Hz) 
Rhythm 1/2 2/3 1 2 4 Other 

Isochronous x  x x x  
4/4 x  x x   
3/4  x  x   
Son Clave x  x x  0.62 
Rumba Clave x  x x  0.62, 0.88 
Hard Clave   x x  0.62, 1.24 
Missing Pulse 1 x   x x 0.62 
Missing Pulse 2    x x 0.63, 0.75 
Missing Pulse 3    x x 0.62 
Missing Pulse 4    x x 0.62, 0.88, 1.12 
Missing Pulse 5 x  x x x 0.62, 0.75, 1.24 
Missing Pulse 6    x x 0.62, 0.75 
Missing Pulse 7 x   x  0.62, 0.75 
Missing Pulse 8 x   x x 0.75 
Missing Pulse 9    x x 0.75 
Missing Pulse 10   x  x 0.63, 0.75, 1.26 



  
 

syncopated rhythms [1, 14]. From the point of view of 
music perception, this observation implies that the brain 
adds frequency components that are not objectively present 
in rhythms themselves. A lack of energy at the pulse 
frequency may explain why pulse detection methods based 
on linear resonance experience problems with syncopated 
rhythms. For syncopated rhythms, our nonlinear model, 
based on fundamental principles of neurodynamics, 
resonates at the pulse frequency. This qualitatively matches 
human performance [1], and the detailed responses of this 
model provide novel predictions which could be tested in 
future experiments. Our observations support the 
hypothesis that pulse corresponds to a neural resonance. In 
simple networks, nonlinear resonance by itself is capable of 
restoring a missing pulse frequency. When multiple 
networks of nonlinear oscillators are coupled together 
(including internal rhythmic connectivity within networks), 
they can resonate at a pulse frequency and related metrical 
frequencies, a form of temporal pattern matching or pattern 
completion. 

In future work, we plan to construct and test other 
models based on nonlinear resonance. For example, the 
results presented here do not enable us to say whether 
internal network connectivity or the thresholding properties 
of Network 2 were primarily responsible for the observed 
responses. Perhaps both are necessary. Future work in this 
area will focus on how the connectivity patterns between 
networks are learned  and address developmental aspects of 
pulse and meter as well as differences across cultures.  
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