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We address the problem of musical variation (identification of different musical 

sequences as variations) and its implications for menial representations of music. 

According to reductionist theories, listeners judge the structural importance of 

musical events while forming mental representations. These iudgments moy 

result from the production of reduced memory representations that retain only 

the musical gist. In a study of improvised music performance, pianists produced 

voriotions on melodies. Analyses of the musical events retained across variations 

provided support for the reductionist account of structural importonce. A neural 

network trained to produce reduced memory representotions for the same 

melodies represented structurally important events more efficiently than others, 

Agreement omong the musicians’ improvisations, the network model, and 

music-theoretic predictions suggest that perceived constancy across musical 

voriotion is a natural result of o reductionist mechanism for producing memory 

representations. 

A common observation about musical experience is that some musical 
sequences are heard as variation of others. The tendency of listeners to hear 
musical variation has been exploited by composers and performers of 
various cultures and styles for centuries. Examples from Western music in- 
clude “theme and variations” forms of classical and romantic music, and 
the improvisational forms of modern jazz. This probfem is not specific to 
music; the problem of perceptual constancy in the face of physical variation 
is central to cognitive science. This problem has interested many researchers 
in the field of music cognition because the invariance of musical identity 
that characterizes the listener’s experience is perceived across a wide range 
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of differences in the surface content of the music (Dowling & Harwood, 
1986; Lerdahl & Jackendoff, 1983; Schenker, 1979; Serafine, Classman, & 
Overbeeke, 1989; Sloboda, 1985). To explain phenomena such as musical 
variation, most theorists rely on structural descriptions of musical sequences. 
Depending on the musical dimension(s) under consideration, the nature of 
the description will vary, but each relies on some abstract system of knowl- 
edge representing the underlying regularities of a particular musical style or 
culture. Through experience with a musical style, listeners are thought to in- 
ternahze characteristic patterns of rhythm, melody, harmony, and so forth, 
which are used to integrate and organize musical sequences, and afford ex- 
periences such as musical variation. 

The problem that musical variation presents to theorists is best illustrated 
by an example. Consider the melodies of Figure 1. The melodies labeled A 
are the children’s tunes “Hush Little Baby” (top), and “Mary Had a Little 
Lamb” (bottom). The melodies labeled B are improvisations on these tunes, 
performed by pianists in an experiment described in this article. Most 
listeners readily identify the B melodies as variations of the A melodies: 
Listeners believe that the B melodies share an identity with the original 
melodies. However, one’s listening to these examples or inspecting the 
musical notation will reveal that at the surface level these two sequences dif- 
fer along a number of dimensions, including pitch content, melodic con- 
tour, and rhythm. Where is the similarity between these sequences? One 
possibility is that as listeners produce internal representations for musical 
sequences, they implicitly evaluate the structural importance of events. 
Thus, certain events may be more important than others in determining the 
relationships that listeners hear between the melodies and variations of 
Figure 1. The evaluation of relative importance allows listeners to create 
reduced descriptions of musical sequences that retain the gist of the se- 
quences and at the same time reduce demands on memory. Other theorists 
have made similar proposals, which we refer to as reductionist theories of 
music comprehension (Deutsch & Feroe, 1981; Lerdahl & Jackendoff, 1983; 
Schenker, 1979). Reductionist theories propose to explain musical variation 
by positing a similarity of the underlying structures in related melodies. 

This explanation for musical variation, that listeners produce reduced 
memory descriptions for musical sequences, poses three major challenges 
for theories of music cognition, The first is the problem of knowledge 
specification. Reductionist theories posit that an experienced listener 
assigns to a musical sequence a relative importance structure that is based 
on previously acquired information: information that is not necessarily pre- 
sent in the individual musical sequence. Therefore, the notion of reduction 
requires that listeners implicitly use style- and culture-specific musical 
knowledge in creating reduced descriptions. This type of structural descrip- 
tion is extracted from the input with the aid of general knowledge about the 
roles that events play in a particular musical idiom, and is thought to reflect 
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the statistical regularities of the particular musical culture or style in ques- 
tion (cf. Knopoff & Hutchinson, 1978; Palmer & Krumhansl, 1990). A great 
deal of effort has gone into the explicit identification of the musical knowl- 
edge required for listeners to produce reduced descriptions of musical 
sequences (Lerdahl & Jackendoff, 1983; Schenker, 1979). However, no 
mechanism has been proposed that specifies what form such knowledge 
might take or how this knowledge is put to use. 

A second major problem is that of empirical validation. Do listeners hear 
musical sequences in terms of a hierarchical structure of relative impor- 
tance? Some empirical support for this claim has begun to emerge in the 
literature. Earlier studies have examined the role of relative importance in 

perceptual phenomena such as judgments of musical completion and stabil- 
ity (Palmer & Krumhansl, 1987a, 1987b), and judgments of similarity 
(Serafine et al., 1989). However, little research has investigated the role of 
structural importance in musical performance tasks such as improvisation, 
in which performers are required to create musical variations. 

Finally, a third major challenge remains for reductionist accounts of 
music comprehension: the specification of learning mechanisms. The fact 
that reduced descriptions require culture- and style-specific musical 
knowledge implies that a complete theory of musical reduction will also 
have a significant learning component. Krunhansl (1990) argued that listen- 
ers abstract and internalize underlying regularities through experience with 
musical patterns. These cognitive representations give rise to expectations 
and affect the stability of memory (Krumhansl, 1979; Krumhansl, 
Bharucha, & Castellano, 1982). Jones (1981) argued that listeners abstract 
and store “ideal prototypes” of musical styles, that lead to musical expecta- 
tions. Unexpected events in music create interest, but are more difficult to 
recall (Jones, Boltz, & Kidd, 1982). However, little work has addressed the 
mechanisms by which listeners may learn the musical regularities or proto- 
types that are necessary for the identification of the underlying structure of 

specific musical sequences. 
In this article, we discuss the problem of musical variation and its im- 

plications for the mental representation of musical sequences. In particular, 
we address each of these three challenges posed for reductionist theories. 
We propose a mechanism that is capable of producing reduced memory rep- 
resentations for music, based on sequences that are first parsed into con- 
stituent data structures. We then model the reduced descriptions using 
recursive distributed representations (Pollack, 1988, 1990), a connectionist 
formalism that allows us to represent symbolic data structures as patterns of 
activation in connectionist networks. We also describe an empirical study in 
which we collect and analyze musicians’ improvised variations on three 
melodies. We compare the improvisations with predictions of structural im- 
portance based on reductionist accounts. The evidence from improvisa- 
tional music performance addresses the validity of reductionist claims and 
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their relationship to the problem of musical variation. It also provides us 

with empirical data to compare with the performance of the connectionist 
mechanism for producing reduced memory representations. Finally, we 
describe a computational experiment in which a neural network is trained to 
produce recursive distributed representations for the same three melodies 
used in the improvisation study. The network model demonstrates a form 
of learning, providing an example of how listeners may acquire intuitive 
knowledge through passive exposure to music that allows them to construct 
reduced memory representations for musical sequences. We test the net- 
work’s ability to generalize: to produce reduced descriptions for a musical 
variation of a known melody, and for a completely novel musical sequence. 
An examination of the reduced descriptions reveals that the representations 
differentially weight musical events in terms of their relative importance, 
thus emphasizing some aspects of the musical content over others. Finally, 
we compare these results with the empirical study to address whether the 
network’s differential weightings agree with the relative importance of 
events inferred from the improvisational music performances. 

THEORIES OF MEMORY FOR MUSIC 

As Dowling and Harwood (1986) observed, the role of memory in listening 
to a piece of music is not unlike the role of memory in listening to a conver- 
sation. In order to understand what is being said at any given moment, one 
need not have perfect recall of the conversation up to that point; what is im- 
portant is the overall meaning or gist of the previous conversation. Listen- 
ing to a piece of music is similar in at least one important way. For even 
moderately complex pieces, most listeners do not literally remember every 
detail; instead, they understand a complex piece by a process of abstraction 
and organization, remembering its musical “gist.” Psychologists studying 
patterned sequence learning in the 1950s and 1960s made similar observa- 
tions regarding individuals’ abilities to perceive and memorize patterns in 
time. Two main theoretical proposals were advanced to explain the psycho- 
logical findings: recoding theories, and rule-formation theories. The con- 
cept of information recoding, first introduced by Miller (1956), suggested 
that subjects presented with to-be-remembered sequences can reduce the 
amount of information to be retained by recoding, or chunking, subsets of 
more than one item into a single memory code. Researchers such as Estes 
(1972), Vitz and Todd (1969), and Garner and Gottwald (1968) argued that 
subjects assign codes to the subgroups of a sequence in order to reduce 
demands on memory, and these codes can be recalled and decoded on a 
later occasion to reconstruct the entire sequence. The principles proposed 
for grouping elements to produce codes were often perceptual, for example, 
Vitz and Todd suggested that runs of perceptually similar elements are cast 
into memory codes. However, the recoding view has been criticized for its 
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reliance on perceptual regularities and for its inability to explain subjects’ 
abilities to predict upcoming events in patterned sequences. 

In contrast to recoding theories, rule-formation theories emphasized in- 
dividuals’ use of ordered vocabularies, or alphabets, and rules that apply to 
alphabetic properties. Several researchers (Jones, 1974; Restle, 1970; Simon 
& Kotovsky, 1963) proposed that subjects abstract serial relations and, using 
rule-based transformations such as repeat, transpose, complement, and 
reflection, generate cognitive data structures. The use of such transforma- 
tions was thought to account for subjects’ abilities to represent and predict 
unfoolding serial patterns. Simon and Sumner (1968) proposed that listening 
to music could similarly be modeled as a process of pattern induction and 
sequence extrapolation, using alphabets and rule-based transformations 
such as same (repeat) and next (next element in the alphabet). 

Both recoding and rule-formation theories, however, fail to explain the 
extraction of invariant identification in musical variation. To handle this 
and other challenges posed by musical experience, reductionist theories of 
music cognition posit cognitive representations that identify the structural 
importance of musical events (Deutsch & Feroe, 1981; Lerdahl & Jackendoff, 
1983; Schenker, 1979). One of the most comprehensive of the reductionst 
theories is Lerdahl and Jackendoff’s (1983) Generative Theory of Tonal 
Music. The theory takes as its goal the description of the musical intuitions 
of listeners experienced with Western tonal music. This is accomplished 
using a combination of music-theoretic analyses, of which me~r~c~i sfruc- 
ture and mime-s~a~ reduction are the most relevant for our purposes. 

The primary function of metrical structure analysis is to describe the sense 
of alternating strong and weak pulses that characterizes musical exper- 
ience, called metrical accent. A metrical structure consists of beats: psycho- 
logical pulses marking equally spaced points in time,’ Stronger and weaker 
pulses form nested levels of beats. The larger the metrical level of the beat 
marking a temporal location, the stronger that beat location, as shown by 
the dots in Figure 2 for the melody “Hush Little Baby.” A second function 
of metrical structure is to mark the onsets of temporal chunks that, in com- 
bination with grouping rules, divide a musical sequence into rhythmic units 
called ~i~e-~pa~~. The resulting tile-span seg~e~ta~io~ divides a piece into 
nested time-spans. Tt captures aspects of the piece’s rhythmic structure, pro- 
viding a constituent structure description for the entire musical piece, as 
shown by the brace in Figure 2. 

’ Beats themselves are often marked by the onset of acoustic events, but the sensation of 

beat can also occur when no event is physically present. When you tap your foot, or snap your 

fingers along with a piece of music, you are physically marking one particular level of beats 
from the metrical hierarchy called the IUCIUS. According to Lerdahl and Jackendoff (1983), 
beats of the tactus level are always present in the perception of music. Beats marking smaller 

temporal levels are present only when acoustic events are present to mark them. 
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Figure 2. Analysis of “Hush Little Baby” following Lerdahl and Jackendoff (1983), showing 

metrical structure analysis, time-span segmentation, and time-span reduction. The original 

melody is shown in musical notation and the tree above it is the time-span reduction. The 

lower staves show the dominant events at each level of the time-span segmentation (marked 

in braces). The metrical structure analysis is marked as rows of dots, and the quantifica- 

tions of relative importance for each event are shown below the segmentation. 

A time-span segmentation forms the input to a rimtvpan redtrction anal- 
ysis, which organizes musical events into a structure that reflects a strict 
hierarchy of relative importance. Within each time-span a single most im- 
portant event, called the head of the time-span, is identified. All other events 
in the time-span are heard as subordinate to this event. The time-span 
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reduction assigns relative importance to each event according to rules that 
consider metrical accent in addition to melodic, harmonic, and structural 
factors. Thus, time-span reduction provides a unification of musical factors 
and predictions regarding which events listeners will perceive to be most im- 
portant. Figure 2 shows a time-span reduction; the top musical staff shows 
the melody and the staves below show the heads for successively larger and 
larger time-spans. At each level, the less important event(s) of each time- 
span are eliminated, and a “skeleton” of the melody emerges. The tree 
above the top musical staff combines the information conveyed by the 
skeletal melodies with the information conveyed by the time-span segmenta- 
tion. Its branching structure emphasizes structural relationships between 
levels of the reduction: that events of Iesser impo~ance are heard as elabor- 
ations of the more important events. The tree also identifies the structural 
ending of the musical passage, the cadence, indicated by the ellipse “tying” 
together two branches of the tree, as shown in Figure 2. 

Reductionist theories can be applied to explain the perception of musical 
variation. Figure 3 compares the theoretical reduction of the original melody 
“Hush Little Baby” with a reduction of the improvised variation on this 
melody (from Figure 1). At the third skeletal level, the two reductions are 
identical. Lerdahl and Jackendoff’s (1983) theory thus can be applied to 
predict an intermediate level of mental representation at which structural 
similarities are captured. These theoretical reductions can be quantified, as 
shown in Figure 2; the numbers correspond to the relative importance of 
each event described by the time-span reduction analysis. Each number is a 
count of the number of branch points passed in traversing the tree from the 
root to the branch that projects in a straight line to the event, inclusive. For 
instance, to calculate importance for the first note of the melody, count 1 
for the root, 1 for a left turn, 1 for a branch point passed, and 1 for a second 
left turn. This final branch projects in a straight line to the event, so count- 
ing stops.’ According to this strategy, the smaller the number, the more 
important is the corresponding event. Metrical accents also make predic- 
tions of relative importance based on event location. These predictions can 
be quantified by counting the levels of beats that correspond to metrical 
predictions (the dots in Figure 2). The two measures are usually correlated 
because time-span reduction is partially based on metrical accent, but the 
time-span reduction adds information beyond metrical structure. We will 
compare both quantifications of relative importance and metrical accents, 
computed as in Palmer and Krumhansl (1987a, 1987b), with the measures 
from improvisational music performance and with predictions derived from 
connectionist formalisms, described next. 

* The branch leading to the first event of a cadence is not counted as a branch point because 
it is considered structurally to be “part of” the final event (Lerdahl & Jackendoff, 1983). For 

example, to calculate importance for the first note of Measure 3, count I for the root, I for a 
branch point pasqed, 0 for a left turn (because this branch is tied), and I for a second left turn. 
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A REDUCTIONIST MECHANISM 

In this section we address the issue of the mechanism by which time-span 
reductions may be computed, given a time-span segmentation as input. One 
difficulty with designing a mechanism based on Lerdahl and Jackendoff’s 
(1983) theory lies in the specification of a relative weighting scheme for the 
set of rules that create reductions. A scheme has not yet been proposed that 
will work for every musical context. For complex musical pieces, one must 
enlist the aid of musical “common sense” in providing the proper weighting 

of musical considerations. A second problem regards learning. Reductionist 
theories assume that a great deal of musical knowledge is acquired as a 
result of experience with the musical culture or style in question. Empirical 
evidence suggests that a restructuring of mental representations for novel 
musical sequences may occur with as few as five or six exposures to a 
sequence (Serafine et al., 1989). However, reductionist theories have not yet 
addressed the issue of how the musical knowledge necessary for the produc- 
tion of reduced descriptions is acquired. 

One approach that offers a solution to these problems is the application 
of connectionist models, which learn internal representations in response to 
the statistical regularities of a training environment using general-purpose 
learning algorithms such as back-propagation (Rumelhart, Hinton, & 
Williams, 1986). The solution for musical variation offered by reductionist 
theories requires the representation of constituent structure, however, and 
connectionist models have been notoriously weak at representing constituent 
relationships such as those in language and music (Fodor & Pylyshyn, 
1988). In fact, the lack of useful compositional representations has been an 
important stumbling block in the application of neural networks and other 
pattern-recognition techniques to the problems of cognitive science in 
general. One solution to this problem involves learning distributed represen- 
tations for compositional data structures using a recursive encoder network. 
This connectionist architecture, known as Recursive Auto-Associative 
Memory (RAAM), has been used to model the encoding of hierarchical 
structures found in linguistic syntax and logical expressions (Chalmers, 
1990; Chrisman, 1991; Pollack, 1988, 1990). 

To produce a memory representation for a musical sequence with the 
RAAM architecture, we first parse the sequence to recover a compositional 
data structure that captures the sequence’s time-span segmentation. Thus, 
the network’s input represents a musical sequence and its constituent struc- 
ture; it does not capture the relative importance information conveyed by 
metrical accent or time-span reduction. We then train a RAAM network to 
produce a distributed representation for each time-span described by this 
structure. For example, the sequence of musical events in Figure 4, “a b c”, 
may represented as the nested structure ((a b) c). A compressor network is 
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trained to combine a and b into a vector Rl, and then to combine the vector 
Rl with c into a vector R2. A reconstructor network is trained to decode the 
vectors produced by the compressor into facsimilies (indicated by the prime 
symbol) of the original sets of patterns. In the example, the reconstructor 
decodes R2 into Rl ’ and c ‘, and Rl ’ into a ’ and b ‘. Thus, the vector R2 is 
a representation for ((a b) c) because we can apply a reconstruction 
algorithm to R2 to retrieve a facsimile of the original sequence. It is a 
distributed representation because it is realized as a pattern of activation. It 
is a recursive distributed representation because its construction requires the 
network to recursively process representations that it has produced. The 
representations are reduced descriptions of musical sequences because the 
vector representation for an entire pattern is equal in size to the vector 
representation of a single event. 

The structures that the RAAM reconstructs are facsimiles of the original 
structures because the construction of a recursive distributed representation 
is a data compression process, which necessarily loses information. The net- 
work may reconstruct some events with lowered activation, and may fail to 

reconstruct other events entirely. The question we address regards which 
events will be reconstructed faithfully, and which will be lost or altered in 
the compression-reconstruction process. If, in the compression-reconstruc- 
tion process, the network consistently loses information pertaining to less 
important events and retains information about more important events 
(i.e., as predicted by the music-theoretic analyses), then the network has 
also captured information that extends beyond pitch and time-span segmen- 
tation. The test is whether or not the network training procedure discovers 
the relative importance of events corresponding to metrical accent and time- 
span reduction. 

If the network passes this test, then the use of recursive distributed repre- 
sentations to represent musical sequences may provide answers to some 
of the questions we have posed for reductionism. Reductions of musical 
sequences may be computed by a memory coding mechanism whose pur- 
pose is to produce descriptions for musical sequences that reduce demands 
on memory while retaining the gist of the sequences. This implies that the 
culture- and style-specific musical knowledge necessary for computing re- 
ductions is realized as a set of parameters (in a RAAM network, a set of 
weights) in the coding mechanism. The acquisition of this set of parameters 
can be viewed as the acquisition of the musical knowledge relevant to com- 
puting reductions. 

This view of reduced memory representations for musical sequences has 
a number of advantages over other possible mechanisms. The vector repre- 
sentations produced by a RAAM for melodic segments are reduced descrip- 
tions of the sequence, similar to the “chunks” proposed by recoding 
theorists. However, the compressed representation for a sequence is more 
than just a label or pointer to the contents of a structure (cf. Estes, 1972); it 
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actually is the description of its contents. Therefore, the numeric vectors 
produced by the network potentially contain as much information as the 
cognitive structures proposed by rule-formation theorists. Because the 
reduced descriptions are represented as neural vectors, they are suitable for 
use with association, categorization, pattern-recognition, and other neural- 
style processing mechanisms (Chrisman, 1991). Such processing mechanisms 
could, for example, be trained to perform sequence extrapolation tasks 
(Simon & Sumner, 1968). 

In the next section we address issues of empirical validation. Do humans 
weight melodic events in terms of relative importance? Can reductionist ac- 
counts explain the phenomenon of invariant identification across musical 
variation? We describe an empirical study of variations on melodies im- 
provised by skilled pianists. We extract a measure of relative,importance for 
each melody, based on the improvisations. We compare these measures to 
reductionist predictions based on Lerdahl and Jackendoff’s (1983) theory. 
In the following section, we describe a study in which we train a RAAM net- 
work to produce reduced descriptions for a set of melodies. We then test the 
network on the same three melodies on which pianists improvised in the em- 
pirical study. We measure the network’s ability to produce representations 
for these melodies, including the ability to recognize melodic variation. We 
describe a method for determining the network’s assigment of relative im- 
portance to individual events in the melodies, and compare the network 
findings with the empirical data and with the theoretical predictions. In the 
final section, we discuss the implications of reductionist theories for models 
of human learning and memory. 

EMPIRICAL INVESTIGATION 

Empirical evidence supporting the reductionist point of view has emerged in 
the literature. However, these early studies have dealt primarily with 
perceptual phenomena (Palmer & Krumhansl, 1987a, 1987b; Serafine et al., 
1989). The reductionist hypothesis also leads to predictions concerning 
music performance. For example, in musical traditions that employ im- 
provisation, performers may identify the gist of a theme in terms of its 
structurally important events and use techniques of variation to create 
coherent improvisations on that theme (Johnson-Laird, 1991; Lerdahl & 
Jackendoff, 1983; Pressing, 1988). Therefore, it should be possible to iden- 
tify the events of greater and lesser importance in a melody by collecting im- 
provisations on that melody and measuring the events that are retained 
across improvisations. We use this rationale to identify structurally impor- 
tant events by asking performers to improvise variations on a melody, and 
we examine the variations for events altered or retained from the original 
melody. 
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A number of methods have been employed to elicit the structure of 
hsteners’ mental representations for musical sequences. For example, 
Palmer and Krumhansl (1987a, 1987b) asked subjects to listen to excerpts 
from a musical passage and rate how “good or complete” a phrase each ex- 
cerpt formed. The rating was taken as a measure of the relative importance 
for-the final event in each musical excerpt. Listeners’ judgments of phrase 
completion at various points in a musical passage correlated well with 
predictions of each event’s relative importance derived from Lerdahl and 
Jackendoff’s (1983) time-span reductions (Palmer & Krumhansl, 1987a, 
1987b). The nature of the musical task, however, was somewhat unnatural, 
because music is usually not presented in fragments. Additionally, the ap- 
plication of this paradigm to longer musical works is problematic. Serafine 
et al., (1989) asked listeners to judge the similarity between related 
melodies. Although this paradigm does not provide measures of importance 
for individual musical events, it does allow the assessment of reductionist 
claims within an ecologically valid task. The similarity judgments among 
melodies corresponded to the degrees of relatedness predicted by a reduc- 
tionist theory (Schenker, 1979), even when radical surface differences ex- 
isted (such as in the musical harmony). This agreement increased with 
repeated hearings, indicating a significant role of learning in determining 
the structure of listeners’ mental representations (Serafine et al., 1989). 
Schenker’s reductionist theory, although similar in spirit to Lerdahl and 
Jackendoff’s proposal, is less specific in its description of rules and their 
applications, often requiring a trained analyst (Serafine et al., 1989) to 
make judgments regarding theoretical predictions. 

The experiment reported here is based on a paradigm described earlier 
(Large, Palmer, & Pollack, 1991). In this paradigm, musicians are pre- 
sented with notated melodies and are asked to improvise (create and per- 
form) simple variations on them. Improvisation in Western tonal music 
commonly requires a performer to identify some framework of melodic and 
harmonic events, and to apply procedures to create elaborations and 
variants on them (Johnson-Laird, 1991; Steedman, 1982; also, see Pressing, 
1988, for a review of improvisational models). Thus, improvisation of 
variations allows the musician freedom to determine which, if any, musical 
events should be retained from the original melody. This paradigm ad- 
dresses the reductionist account by measuring musicians’ intuitions about a 
particular melody within the context of a familiar task. This paradigm has 
an additional advantage in that it allows for the collection of individual 
ratings of importance for each event. Musical events that are viewed as 
structurally important should tend to be retained in improvised variations. 
Events viewed as less important (i.e., events that function as elaborations of 
important events) should be more likely to be replaced with different 
elaborations. 
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We measure the relative importance of each pitch event in the original 

melody by counting the number of times it was retained in the same relative 
temporal location across improvisations. Although this is a coarse measure 
of improvisation, it allows us to generalize across many aspects specific to 
music performance (including dynamics, phrasing, rubato, pedaling, etc.) 
and improvisation (including motific development, stylistic elaboration, 
etc.), and concentrate instead on those factors that reflect reductionist 
considerations. 

The primary objective of this study was to extend earlier findings (Large 
et al., 1991) that suggested that a musician’s improvisations on a tune indi- 
cated an underlying reduced representation of the melody. According to our 
application of the time-span reduction hypothesis to improvisation, more 
important events (those retained across multiple levels of the time-span 
reduction) should be more likely than unimportant events to be retained in 
variations on a melody. Therefore, the number of individual pitch events re- 
tained in the musicians’ improvisations should correspond to the theoretical 
predictions of structural reductions. 

Method 

Subjects 
Six skilled pianists from the Columbus, Ohio community participated in the 
experiment. The pianists had a mean of 17 years (range= 12-30 years) of 
private instruction, and a mean of 24 years (range = 15-32 years) of playing 
experience. All of the pianists were comfortable with sight reading and im- 
provising. All were familiar with the pieces used in this study. 

Materials 
Three children’s melodies (“Mary Had a Little Lamb,” “Baa Baa Black 
Sheep,” and “Hush Little Baby”) were chosen as improvisational material 
that would be familiar (well learned) for most listeners of Western tonal 
music, to ensure a well-established notion of relative importance for each 
event and to avoid learning effects. Additionally, these pieces were fairly 
unambiguous with regard to their time-span reductions. 

Apparatus 
Pianists performed on a computer-monitored Yamaha Disklavier acoustic 
upright piano. Optical sensors and solenoids in the piano allowed precise 
recording and playback without affecting the touch or sound of the acoustic 
instrument. The pitch, timing, and hammer velocity values (correlated with 
intensity) for each note event were recorded and analyzed on a computer. 
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Procedure 
The following procedure was repeated for each piece. Pianists performed 
and recorded the melody, as presented in musical notation, five times. 
These initial recordings allowed each pianist to become acquainted with the 
improvisational material. With the musical notation remaining in place, the 
pianists were then asked to play five simple improvisations. The pianists 
were also asked to play five more complex improvisations, which are not 
discussed here. All performances were of a single-line melody only; pianists 
were instructed not to play harmonic accompaniment. All pianists indicated 
familiarity with all of the musical pieces. 

Results 

Coding Improvisations 
Each improvisation was coded in terms of the number of events retained 
from the original melody, to develop a measure of relative importance for 
each event. The following procedure applied to the coding of each improvis- 
ation. First, the improvisation was transcribed by two musically trained 
listeners, who agreed on the transcriptions. Next, sections of the improvisa- 
tion were matched to sections of the original. For most improvisations this 
was straightforward; for two of the improvisations, sections that repeated 
in the original melody (“Baa Baa Black Sheep”) were rendered only once in 
the improvisation, and these were doubled for purposes of analysis. Finally, 
individual events of the improvisation were placed into correspondence with 
the original. If only the pitch contents and rhythm changed (meter and 
mode remained the same), as in most of the improvisations, this process was 
straightforward: events were placed into correspondence by metrical posi- 
tion. In the case of mode change (e.g., the flatted third is substituted for the 
major third in a major to minor mode shift), substitutions were counted as 
altered events. In the case of a meter change, metrical strutures were aligned 
according to the onsets of each measure and half-measure, and events were 
then placed into correspondence by temporal location. Those events whose 
pitch class was retained in the correspondence between original melody 
and variation were coded as “hits” and received a score of 1; those events 
whose pitch class was altered (or for whom no event corresponded in the im- 
provisation) were coded as “misses” and received a score of 0. For exam- 
ple, if a quarter note, C, were replaced with 4 sixteenth notes, C-B-C-B, 
beginning at the same metrical location, the C would be coded as a hit. If, 
however, the C has been replaced with B-C-B-C, the C would be coded as a 
miss. Thus, only deletions and substitutions of events in the original melody 
affected the number of hits. 

The number of hits for each pitch event in the original melody was 
summed across the five improvisations for each performer. Figure 5 shows 
the mean number of retained events across performers for each melody. To 
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Figure 5. Theoretical and empirical measures of relative importance for three melodies: 

A) “Mary Had a Little Lomb”; B) “Baa Baa Black Sheep”: and C) “Hush Little Baby”. 
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TABLE 1 

Squared Correlation Coefficients for Theoretical 

Predictions and Improvisation-Based Measures 

Metrical accent predictions 

Time-span predictions 

Semipartial 

(metrical accent removed) 

Melody 1 Melody 2 

(Maw) (Baa) 

.63* .f30* 

.76* .79* 

.42* .30* 

Melody 3 

(Hush) 

.78” 

.b7* 

.21 

* p<.o5. 

rule out the possibility that events in the original melody were altered at 
random, or that performers simply added events to create improvisations, 
an analysis of variance (ANOVA) on performers’ mean number of retained 
events by event location was conducted for each melody. Each of the 
three ANOVAs indicated a significant effect of event location: Melody 1, 
F(25, 125) = 4.02, p < .Ol; Melody 2, F(52, 260) = 6.64, p < .Ol; and Melody 
3, F(18, 90)= 7.76, p < .Ol. Thus, performers were more likely to retain 
some melodic events than others across improvisations. The variables influ- 
encing the number of retained events at each location were further inves- 
tigated in the following analyses. 

Comparison with Theoretical Predictions 
Both metrical accent and time-span reduction make predictions about 
relative importance based on event location. Correlations between improv- 
isation measures and both sets of theoretical predictions for each melody 
are summarized in Table 1. First, the correlation between the number of 
pitch events retained and the quantified metrical accent predictions for each 
event location was significant for each melody (p< .05). Improvisation 
measures were next compared with predictions from the time-span reduc- 
tion analysis for each melody, obtained by quantifying the number of 
branch points passed in the tree, from root to terminal branch, as shown in 
Figure 2. Correlations between the number of pitch events retained and the 
quantified time-span reduction predictions were also significant for each 
melody (p-c .05). Figure 5 shows the time-span quantifications along with 
the improvisational data, indicating that those events predicted to be most 
important according to the time-span reduction tended to be retained across 
improvisations. 

To ensure the predictive power of the time-span reduction beyond 
metrical accent (on which time-span reductions are partially based), the im- 
provisation measures were correlated with time-span reduction predictions 
after the effects of metrical accent were partialed out. These semipartial 



REDUCED MEMORY REPRESENTATIONS FOR MUSIC 71 

correlations, also shown in Table 1, were significant (p < .05) for Melodies 
1 and 2, indicating that time-span reduction did contribute information 
beyond metrical accent. The semipartial correlation was not significant for 
Melody 3 (p = .37), indicating that in this case correlation of improvisation 
measures with the time-span reduction analysis was largely due to the ef- 
fects of metrical accent. 

Discussion 
Musicians’ improvisations of variations on simple melodies provided strong 
support for the reductionist hypothesis. Performers tended to retain certain 
events in each melody, and used improvisational techniques to create varia- 
tions around those retained events. In addition, the music performances 
agreed with reductionist predictions of which events were relatively impor- 
tant in these simple melodies. Furthermore, the findings for two of the three 
melodies indicate that musical factors specific to time-span reductions 
played an important role in musicians’ improvisation of variations. 

The relatively high contribution of metrical structure to the improvisa- 
tions based on the third melody (“Hush Little Baby”) may indicate a qual- 
itative difference between the performers’ intuitions and the theoretical 
predictions for this piece. For example, the improvisations often retained 
the first event of Measure 1 (as seen in Figure 5), an indicator of its relative 
importance, disagreeing with the theoretical weighting of this event. This 
may be due to the salience of the large initial pitch interval, or it may be a 
general primacy effect (making the first few events more likely to be retained 
regardless of reductionist considerations). The performances also disagreed 
with the predictions at the structural ending; all events in Measure 4 were 
retained relatively often. Alternatively, this could be accounted for as a 
recency effect. 

These discrepancies emphasize the difficu!ty of providing a relative 
weighting for a set of rules that determine the reductionist structure of men- 
tal representations. For example, the particular order in which a subset of 
rules is applied can lead to different weightings of constituents. However, 
the improvised performances do show general agreement with the theoreti- 
cal predictions of time-span reduction. This is the first demonstration, to 
our knowledge, that the musical factors incorporated in the reductionist 
theory (Lerdahl & Jackendoff, 1983) can account for the structure of per- 
formers’ mental representations for musical improvisations. We next com- 
pare these measures with the reduced memory descriptions generated by a 
connectionist network for the same three melodies. 

NETWORK MODEL 

In this section we describe an implementation of RAAM architecture for 
producing reduced memory descriptions of musical sequences. A RAAM 
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network is trained on a corpus of simple melodies and is then tested in two 
ways. First, we examine the network’s ability to compress and reconstruct 
accurately a test set of three tunes. Second, we examine the structure of the 
representations produced by the network. The RAAM network is an example 
of a mechanism that applies knowledge about a musical genre to the task of 
producing reduced memory descriptions for specific musical sequences. 
This knowledge is captured as a set of weights that the network extracts 
directly from a training environment (the corpus of melodies), thereby 
accounting for learning. 

The network experiment has two goals. The first is to measure the per- 
formance of the RAAM network using a well-formedness test (Pollack, 
1990). For a given input melody, the compressor network creates a reduced 
description. The reconstructor network is then applied to the reduced descrip- 
tion to retrieve its constituents. If the reconstructed sequence matches the 
input melody, either exactly or within some tolerance, then the reduced 
description is considered to be well formed. The well-formedness test can 
also be used to measure the ability of a RAAM network to generalize, by 
testing the network’s performance on novel sequences. In this experiment, 
we examine the performance of the network on a test set of three melodies: 
known, variant, and novel. The known melody is one of the melodies pre- 
sented to the network during a training phase. Performance on this melody 
establishes a baseline of the network’s ability to encode melodies correctly. 
The variant melody is a variation of material presented to the network in the 
training phase, and the novel melody is a melodic sequence not related in 
any obvious way to the material presented in the training phase. If the net- 
work is able to generalize from the examples presented in the training phase, 
then it should be able to produce well-formed reduced descriptions for one 
or both of the variant and novel melodies as well as for the known melody, 

The second goal is to determine the structure of the representations pro- 
duced by the network. The network is provided with a time-span segmenta- 
tion for each melody. The question we ask is: Will the network be able to 
take advantage of this information about temporal structure to preserve 
musical regularities that are systematically related to this structure? Our 
prediction is that the network’s reduced descriptions will differentially 
weight constituent events, and furthermore, that this differential weighting 
will agree with both the improvisation measures and the theoretical predic- 
tions (Lerdahl & Jackendoff, 1983) regarding the relative importance of 
events. This prediction is based on the observation that RAAM networks 
learn a data compression algorithm that is tailored to the statistical regulari- 
ties of a training set. If our training set is adequately representative of the 
statistical characteristics of simple Western tonal melodies, the network 
should be able to make use of this information, and we should see significant 
levels of agreement among network, theoretical, and empirical measures. 
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Network Implementation 
The RAAM architecture uses a connectionist substrate of fully connected 
feed-forward neural networks to produce recursive distributed representa- 
tions (Potlack, 1990). For example, to encode binary trees with k-bit patterns 
as the terminal nodes, the RAAM compressor would be a single-layer net- 
work with two k-unit input buffers and one k-unit output buffer. The RAAM 
reconstructor would then be a single-layer network with one k-unit input 
buffer and two k-unit output buffers. The input and output buffers are 
required to be the same size because the network is used recursively: The 
output of the network is fed back into the network as input. During training, 
the compressor and reconstructor are treated as one standard three-layer 
network (2k inputs, k hidden units, and 2k outputs) and trained using an 
auto-associative form of back-propagation (Cottrell, Munro, & Zipser, 
1987; Rumelhart et al., 1986), in which the desired output values are simply 
the input values, To create the individual training patterns for the network, 
the structures that make up the training set are divided into two-element 
groups [e.g., (a b) or (RI R2)]. 

Two special issues arise in designing a RAAM network for encoding 
musical structure. First, we must determine a constituent structure for each 
musical sequence that will specify how events are presented to the network 
input buffers, as shown in Figure 6 (top). As discussed previously, we will 
use the time-span segmentation, a nested constituent description that captures 
aspects of the sequence’s rhythmic structure (Lerdahl & Jackendoff, X983). 
In the simple melodies used in this study, the time-spans at smaller constit- 
uent levels (less than a measure) were “regular” (Lerdahl & Jackendoff, 
1983), that is, they were aligned with the locations of strong metrical beats. 
Therefore, the lower levels of time-span segmentation were determined by 
the metrical structure. Grouping rules (Lerdahl & Jackendoff, 1983) con- 
tributed to determine time-span segments at constituent levels larger than 
the single measure. Each encoding produced by the network is the represen- 
tation of a time-span (and its events) at some level in the time-span seg- 
mentation. Once an encoding has been produced, temporal information is 
implicitly managed by the recursive structure of the decoding process, also 
shown in Figure 6 (bottom). As decoding proceeds, the output codes repre- 
sent smaller and smaller time-spans (at lower and lower levels), until, at the 
termination of the decoding process, a single pitch event is output and the 
temporal location of that event is uniquely determined. Thus the temporal 
structure of each melody plays an important part in network processing; the 
reduced descriptions of the melody in Figure 6 capture temporal structure in 
a way analogous to Lerdahl and Jackendoff’s (1983) hierarchically nested 
time-spans, shown for the same melody in Figure 2. 

Second, we must specify the representation of pitch events to be encoded 
by RAAM. The different pitches in each melody are represented as binary 
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feature vectors (on or off). We chose a “local” representation of pitch class; 
seven units represented the seven pitch classes of the diatonic scale in Western 
tonal music. We also added two units to represent melodic contour. One 
unit means up from the previous event, the other means down, and turning 

both units off means no contour change. This representation nominally cap- 
tures octave equivalence and pitch height but makes no further assumptions 
regarding the psychophysical components of pitch, as other connectionist 
researchers have done (cf. Mozer, 1991). More sophisticated encoding strat- 
egies may prove useful for certain musical applications (cf. Large et al., 
1991), but for the purposes of this study we sought to minimize inductive 
biases that would be introduced by more complex coding schemes. 

Two modifications to the RAAM architecture are necessary to encode 
Western tonal melodies such as those in our training set. First, existing appli- 
cations of the RAAM architecture have only accurately handled tree struc- 
tures that are four to five levels deep. However, the 25 training melodies 
used in this study contain constituent structure hierarchies six to seven levels 

deep, which expand to more than 1,000 individual training patterns. Pre- 
vious experiments found that this training set size outstrips the capacity of a 
RAAM network that contains a reasonably small number of hidden units 
(Large et al., 1991). We adopt a method here of scaling up the basic archi- 
tecture by having one RAAM network recursively encode lower levels of 
structure, and then passing the encodings it produces to a second RAAM 
that encodes higher levels of structure,as shown in Figure 6. This method, 
known as modular RAAM (Angeline & Pollack, 1990; Sperdutti, 1993), 
allows us to build recursive encoders that can handle trees with many hier- 
archical levels by using multiple networks that each contain fewer hidden 
units. This form of training, however, violates one of the original design 
decisions of RAAM: that the terminals be recognizable as binary strings so 
that it is clear when to terminate the decoding process (Pollack, 1990). We 
address this problem by adding an extra unit to each RAAM module, which 
is trained as a terminal detector. This allows us to determine: (a) when to 
pass a code from the higher level RAAM network module to the lower level 
RAAM module during decoding; and (b) when to interpret a code produced 

by the bottom module as a pitch event.3 
The second modification addresses ternary groups common in Western 

tonal music; binary branching structures are not sufficient to capture musical 
groupings that often consist of three elements. To handle both pairs and 

’ Knowing when to terminate decoding is equivalent to determining the level of the time- 

span seqmentation to which a melodic event corresponds. In general, levels of constituent 

structure in the network’s input will correspond to levels of time-span segmentation and 

metrical accent; however, the network must learn the level of constituent structure at which to 

end the decoding process. 
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A. B. 

I I 

I 97 I 

L I 
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Figure 7. Proposed buffering for encoding duple and triple grouping structures: A) Three 

buffers cannot discriminate between a group of two events and a group of three events in 

which the middle event is a rest; 6) four input buffers can make the discrimination. 

triples, we might create a network with three input buffers, only two of 
which would be used to encode binary segments. However, this would lead 
to the situation shown in Figure 7A, in which a triple with a rest in the middle 
is indistinguishable from a pair. Instead, a network with four input buffers 
can encode both duple and triple segments and distinguish among them, as 
shown in Figure 7B. Here Buffer 1 corresponds to the first event of any 
group, Buffer 3 corresponds to the second event of a binary group, and 
Buffers 2 and 4 correspond to the second and third events, respectively, of a 
ternary group. In order to properly interpret the output of these buffers at 
decoding, we add four extra units at the output. The network is trained to 
turn on an output unit when the corresponding buffer’s output is to be 
used; otherwise the contents of the buffer are ignored, and trained with a 
don’t-care condition (Jordan, 1986). 

Method 

Training the Network 
Twenty-five simple children’s melodies (listed in the Appendix, pp. 94-96) 
were chosen as a training set because they provided a simple, natural musi- 
cal case for study. The tunes comprised 18 unique melodies; five of these 18 
melodies had variations in the training set. Each melody was between 4 and 
12 measures in length, with a time-signature of 214, 3/4,4/4, 6/8, or 12/8. 
The tunes provided constituent structures six to seven levels deep, in which 
either binary or ternary groups appeared at each level. Although the pitch 
event representations required only nine bits (7 pitch class units and 2 con- 
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tour units), we used 35 units, allowing 26 extra degrees of freedom for the 
system to use in arranging its intermediate representations. These extra 
dimensions of representation were set to 0.5 on input, and trained as 
don’t-cares (Jordan, 1986) on output. As described previously, the two 
RAAM modules each required four input buffers, and each resulting 
module had 140 input units, 35 hidden units, and 148 output units. 

The first module was trained on the bottom two to three levels of the 
trees, such that the input corresponded to metrical levels up to and including 
coding of the tactus, or beat level (see Figure 2). Therefore, the representa- 
tions that emerged from the lower RAAM (the output) corresponded to 
time-spans with a length of one half-note for binary groups, and one dotted 
half-note for ternary groups (see Figure 6). The second module was trained 
on the upper three to four levels of the trees, corresponding to larger struc- 
tural levels of the melodies. This division of labor allowed the modular 
architecture to approximately balance the learning load between the two 
modules, measured by the number of unique training patterns. The two 
modules were trained simultaneously, with the bottom module’s output 
providing the input for the top module. Rather than the network being ex- 
posed to the entire training set of 25 melodies, four melodies were chosen 
randomly from the training set and forward-propagated in each training 
cycle: then error was back-propagated through the network (cf. Cottrell & 
Tsung, 1991). This method allowed a faster running time for the large train- 
ing set. Because the length of the tunes in the training set (and therefore the 
number of individual training patterns) varied for each cycle of back-propa- 
gation, the learning rate was set to 0.7 divided by the number of training 
patterns seen on that cycle. Momentum was set to 0.5 and weight decay to 
.OOOl. Training lasted for 1,300 cycles, at which point the error associated 
with the test set of melodies reached a minimum value. 

Testing the Network 
We tested the network’s performance in two ways. First, well-formedness 
tests assessed the ability of the network to accurately compress and recon- 
struct each melody, and thereby revealed the basic representational capacity 
of the network. Second, tests of representational structure assessed the rela- 
tive weighting of constituents on an event-by-event basis, and thereby revealed 
the nature of the representational strategy developed by the network. 

The network was tested on a set of three melodies: a known melody, a 
variant melody, and a novel melody, shown in Figure 8. These were the 
same three melodies used in the empirical study of improvisation; the names 
used here denote the particular relationship of each melody to the network 
training set. The known melody, “Mary Had a Little Lamb,” occurred in 
the training set (Appendix, Melody 16A; all melodies are shown in the key 
of C). The network’s performance on this melody is representative of the 
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Original 

Reconstruction - Half Note Level 

Reconstruction - Whole Tune Level 

R. Variant Melody 

Original 

Reconstruction - Half Note Level 
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C. Novel Melody 

Original 

Reconst~ction - Half Note Level 

Reconstruction - Whole Tune Level 

Figure 8. Original melodies and network reconstructions: A) “Mary Had a Little Lamb” 

(known): 6) “Baa Baa Black Sheep” (variant): and C) “Hush Little Baby” (novel). Each melody 

was reconstructed from several codes (the half-note level RAAM), and from a single code 

(the whale-tune level RAAM); Xs denote failures in network reconstructions. 
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network’s performance on familiar (learned) melodies. The variant melody, 
“Baa Baa Black Sheep,” did not occur in the training set; however, four 
closely related variations of this melody (18A-D) did occur in the training 
set. The local structure (duration patterns and melodic contour of individual 
measures) of the variant melody was very similar to that of training set 

Melodies 18 C and D. The global structure (3 two-measure phrases with simi- 
melodic and harmonic implications) of the variant melody was similar to 
training set Melodies 18A and B. Performance on this melody indicates the 
ability of the network to account for simple melodic variation, because the 
network was required to recombine familiar local structures (individual 
measures) in novel global contexts (different melodies) that shared structural 
features with known melodies. The novel melody, “Hush Little Baby,” did 
not occur in the network training set, nor was it closely related to any of the 
melodies in the training set. Network performance on this melody indicates 
the ability of the network to perform a type of generalization different from 
that required for melodic variation: the ability to represent novel musical 
sequences at local levels of structure, as well as the ability to combine novel 
local structures in novel global contexts. 

Results 

Tests of Well-Formedness 
Each melody was reconstructed by the decoder network from the recursive 
distributed representation produced by the compressor. Errors in the recon- 
structed melody took the form of additions (the network reconstructed an 
event that was not present in the original melody), deletions (the network 
failed to reconstruct an event that was present in the original melody), and 
substitutions (the network reconstructed an event incorrectly in the same 
position). These errors correspond to two aspects of the network’s perform- 
ance. The first is whether or not the network correctly reconstructs the time- 
span segmentation, which determines the rhythm (duration pattern) of the 
output sequence. The second is whether or not the network correctly recon- 
structs the contents of the output vectors, which correspond to the pitch 
contents of the output sequence. We combined these considerations into a 
single measure of network performance by calculating whether the network 
gives the correct output for each possible temporal location. Each of the 
melodic sequences in the test set had a smallest durational value of a six- 
teenth note, and no reconstruction produced any smaller temporal values. 
Therefore, we based our error measure on the number of sixteenth-note 
locations in each piece. There were 64 (16 x 4) sixteenth-note locations in 
the known melody, 96 (16 x 6) in the variant melody, and 32 (8 x 4) in the 
novel melody. Given our coding scheme, the chance estimate for percentage 
of events correct at each location is l/16, or 6.25%, based on 16 possible 



REDUCED MEMORY REPRESENTATIONS FOR MUSIC 81 

outcomes: seven pitch classes times two contour changes (up or down) plus 

a repeated pitch and a rest. 
As an approximate measure of the network’s ability to correctly compress 

and reconstruct constituent structures, we calculated average performance 
on the training set melodies, We measured performance at two points in the 
time-span segmentation for each melody. First, the network’s ability to 
compress and reconstruct time-span segments with only three levels of recur- 
sive nesting-corresponding to a time-span of one half-note for binary 
groups-was examined. Network performance in reconstructing training set 
melodies with three levels was 92%. Next, the network’s ability to compress 
and reconstruct time-span segments that corresponded to entire melodies, 
with six to seven levels of recursive nesting, was examined. Here the net- 
work’s performance was 71%. Thus, the representations captured lower level 
structures quite faithfully, whereas at global levels of structure, the repre- 
sentations began to lose sequence details. (The network’s performance at 
the lower levels will always be more accurate than at the global levels because 
more data compression at global levels results in greater susceptibility to 
loss of information.) 

In order to understand the network’s performance better, we examined 
the reconstructions for the three test melodies in detail, which are shown in 

Figure 8. The reconstruction of the known melody, “Mary Had a Little 
Lamb,” gives an indication of network performance on melodies learned in 
the training set. As described before, we first examined the reduced descrip- 
tions produced by the lower level RAAM module for the known melody 
(subsequences of events up to the level of half-notes; lowest three levels of 
hierarchical nesting). In this reconstruction, the network made a single error, 
adding an event in the third measure, for a performance of 98%. Recon- 
struction at the whole-tune level (all seven levels of hierarchical nesting) 
resulted in four errors, giving an overall performance of 94% (60/64) for 
this melody, which was significantly better than chance (binomial test, 
p-c .Ol). This reconstruction was better than the average for training set 
melodies, probably due to the fact that two instances of this melody (16A 
and B) occurred in the training set. Note, also, that the network’s recon- 
struction of the first measure of this melody at the whole-tune level resembles 
the duration pattern of Melody 16B; however, the reconstructions of 16A 
and 16B did differ (the network was able to differentiate between them). 

The reconstruction of the variant melody, “Baa Baa Black Sheep,” gives 
an indication of the network’s performance on simple variations of learned 
melodies. The reconstruction produced by the lower level RAAM module 
for subsequences corresponding to half-notes (three lowest levels of hier- 
archical nesting) resulted in performance of 92% (88/96). The network suc- 
cessfully learned the lower level details because most of these surface features 
were present in the training set (see Melodies 18C and D). The network’s 
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reconstruction at the whole-tune level (all seven levels of nesting) resulted in 
15 errors, for a performance of 84% @l/96), again significantly better than 
chance (p < .Ol). The reconstruction of this melody at (only) the whole-tune 
level was the same as its reconstruction of “Twinkle Twinkle Little Star,” 
one of the four related melodies in the training set (18A), for which its per- 
formance was 98% (94/96 events). This is not a surprising result, but it is 
revealing to note that the network reconstructed Melody 18A rather than 
one of the other related training set melodies (18B-D). As Figure 8 shows, 
the half-note level representations preserved local structure. The abiiity to 
exploit constituent structure, combined with the use of a recursive encoding 
strategy, allowed the network to rely upon structural similarities at the 
whole-tune level, rather than melodic and rhythmic features at lower levels, 
in determining the representation of this melody. 

The reconstruction of the novel melody, “Hush Little Baby,” is indicative 
of the RAAM’s ability to encode novel sequences. Again, we first examined 
the reduced descriptions produced by the lower level RAAM module for 
subsequences of the original melody by encoding groups of events only up 
to the level of half-notes (three levels of hierarchical nesting). Figure 8 shows 
the reconstruction from the reduced descriptions for each half-note of the 
tune. The lower level reconstructions produced 10 errors, for a success rate 
of 69% (22/32), again significantly better than chance @< .01). Seven of 
the 10 errors occurred in the third measure, and the other three measures of 
the tune were reconstructed rather faithfully. At the whole-tune level, there 
were 17 errors, for a performance of 47% (15/32), which is significantly 
better than chance (p< .Ol), but overall, the reconstruction is rather poor 
(there are only 19 events in the original tune). It is interesting to note that 
the rhythm was reconstructed well (27/32, or 84%), but very few pitch 
events were reconstructed correctly (3/19, or 16%). Thus, the network’s 
representation of this melody at the whole-tune level was not well formed, 
and generalization to this novel sequence was better at the lower levels of 
the hierarchy. 

Tests of Representational Structure 
Next, we analyzed the structure of the distributed representations to deter- 
mine the relative contributions of individual events. One method is to directly 
examine the representation vectors to determine the function of individual 
hidden units. Little information can be retrieved from recursive distributed 
representations of this size, however, because of their complexity (Pollack, 
1990). As an alternative approach, the “certainty” with which the network 
reconstructed each event of the original sequence was measured by computing 
the distance between the desired (d) and obtained (0) vector representations 
at each sequence location (i). This analysis considered only those output 
units that represent pitch class (ignoring contour), consistent with the 
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TABLE 2 

Squared Correlation Coefficients for Network Reconstructions 

Known Variont Novel Novel 

(Mary) (Baa) (Hush) (Hush) 

Whole-Tune Whole-Tune Whole-Tune Half-Note 

Improvisation data .35* .64** .lO .40* 

(No. of events retained) 

Metrical accent predictions .39** .55** .24 .45** 

Time-span predictions .39** .44** .25 .52** 

Semipartial .14 .35** .27 .29 

(metrical accent removed) 

* p<.lO. ** p<.os. 

analysis of the improvisations. To compensate for the fact that some events 
were added and others deleted in the reconstructions, we considered only 
the locations in the reconstructions for which pitch vectors should have 
been output. Thus, only deletions and substitutions of events from the 
original melody affected this measure, as in the previous empirical study. A 
similarity measure was defined, 

that ranged from 0 (most different) to 1 (identical), and represented the 
probability that desired pitch events occupied the appropriate positions in 
the original sequence, based on the network representation. Thus, sequence 
locations at which this measure was smallest were locations at which the net- 
work was most likely to make a reconstruction error. These probabilities 
were then interpreted as predictions of relative importance for each event in 
the distributed representation. 

The probabiiity measures of relative importance at the whoie-tune level 
were correlated with the musical improvisation data, as summarized in 
Table 2. The correlations were large for the known (PC .lO) and variant 
@< .05) melodies, but not for the novel melody. This was not surprising 
because the novel melody did not have a well-formed distributed representa- 
tion at the whole-tune level. However, when the novel melody was recon- 
structed from the reduced descriptions corresponding to the half-note level 
of the tune (shown on the bottom of Figure 8), the resulting correlation 
approached significance @ < . IO). 

Next, we compared the network measures of relative importance with the 
quantifications of theoretical predictions, as shown in Table 2. The correla- 
tions with time-span reduction predictions were significant for the known 
and variant melodies and for the measure-level reconstruction of the novel 
melody 0, < .05) but not for the whole-tune level reconstruction of the novel 
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melody. The correlations with metrical accent predictions also were signifi- 
cant for each melody @ < .05). We therefore correlated the network measure 

with time-span reduction predictions after metrical accent was partialed 
out. The semipartial correlation was not significant for the known or novel 
melodies, but was significant for the variant melody (p< .05), indicating 
some ability of the network to extract structure beyond metrical accent. 

Discussion 
We have demonstrated a mechanism, RAAM, that is capable of producing 
recursive distributed representations for musical sequences. A general learn- 
ing algorithm, backpropagation, extracted sufficient information from a 
training set of 25 simple melodies to produce reduced descriptions of known, 
variant, and novel sequences. The reconstructions of melodies produced by 
the network were fairly accurate, but did not retain all of the details. The 
network produced reduced memory representations that preserved the 
important structural features of the sequences. 

We first investigated the performance of the network using the RAAM 
well-formedness test. In all three test cases, the network failed to reconstruct 
some events, reconstructed other events incorrectly, and occasionally added 
some that were not present in the original sequence. However, three sources 
of evidence suggested that the representations successfully captured the 
major structural features of the melodies. First, the reconstructions were 
faithful to the rhythm of the original melodies, even in the case of the novel 
melody. Second, the network correctly reconstructed most of the pitches in 
the original melodies. Third, the events on which the network made recon- 
struction errors tended to be the less important events, as shown by the cor- 
respondence of network predictions of relative importance with theoretical 
predictions and improvisational data. 

The network performed best on familiar (learned) melodies, and differ- 
entiated between subtle variations of the same melody (16A and 16B). We 
also tested the ability of the network to generalize: to represent both a variant 
of a learned melody and a truly novel melody (one unrelated to the learned 
melodies). The performance of the network in reconstructing the variant 
melody showed how the network handles simple melodic variation. This 
melody shared local structure with training set melodies 18C and D, and the 
network’s lower level codes (up to the half-note level) preserved this struc- 
ture. At a global level, the compression-reconstruction process followed the 
attractor (a known path) for another melody with which the variant shared 
global structure (18A). The network also identified the important pitch 
events in the variant, indicated by the fact that network measures of relative 
importance for this melody correlated strongly with the time-span reduction 
predictions. Comparison with the empirical data from improvisations sup- 
ported the conclusion that the network successfully identified events inter- 
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preted as major structural features by musicians. Overall, these results 
indicate the ability of the network to exhibit a limited but important form 
of generalization. 

The findings for the novel melody indicated that the network still per- 
formed well at lower levels of structure in handling unlearned sequences; it 
produced well-formed memory representations for the three lowest levels of 
the constituent structure. At higher levels of structure, however, the network 
failed to generalize, reproducing the correct rhythm but incorrect pitches 
for this melody. This aspect of performance may be due to the learning 
environment, which may not have provided a rich enough set of patterns at 
higher levels of structure. 

The information retained by the network in the compression-reconstruc- 
tion process agreed well with music-theoretic predictions of the relative 
importance of musical events. The limited size of the training and test sets 
makes it difficult to say precisely why the agreement occurred; however, the 
time-span segmentation used as input to the network was related to the 
music-theoretic predictions. The network used this information about rhyth- 
mic structure, coded as position in a fixed input buffer, to learn representa- 
tions that retained musically important events and major structural features. 
For instance, the network may have learned metrical accent by weighting 
the first element of lower level time-spans (which aligned with strong metrical 
beats) more heavily than others. The relative importance predictions, how- 
ever, were based on more complex rhythmic relationships. To learn relative 
importance, the network may have learned other stylistic factors. For exam- 
ple, the RAAM network may have learned that the last event in each sequence 
was predictable: It is always the tonic. Thus, the network appears to have 
extracted some relationships beyond metrical accent, and did so strictly on 
the basis of the regularities in the training set. The network was forced to 
distill musical regularities such as these from the training set in response 
to two opposing pressures: (1) to retain as much information about each 
sequence as possible; and (2) to compress the information about each se- 
quence into a pattern of activation over a small number of units. 

Finally, and most importantly, we demonstrated the psychological plaus- 
ibility of this approach to creating reduced memory representations for 
music. Certain events dominated the structure of the reduced descriptions 
by virtue of the fact that they had the greatest probability of being correctly 
reconstructed by the network. The events that dominated the network’s 
reduced descriptions were precisely those events most important in the mental 
representations for these melodies measured by the musical improvisations 
and posited in the theoretical reductionist predictions, These findings indi- 
cate that the RAAM coding mechanism produced reduced descriptions for 
musical sequences that implicitly weighted events in each sequence in terms 
of their relative structural importance. This is a major finding because it 
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supports the psychological plausibility of recursive distributed representa- 
tions as an approach to modeling human memory. Combined with the net- 
work’s overall performance in reconstruction, these findings suggest that 
the reduced memory representations successfully captured the structure of 
musical sequences in ways similar to the mental representations underlying 
improvisational music performance. 

GENERAL DISCUSSION 

We began with the problem of musical variation: How do listeners and per- 
formers judge certain musical sequences to be variations of others? We have 
argued that musicians make such judgments based not on characteristics of 
the surface structure of sequences, but instead based on similarity of reduced 
memory representations formed from the sequences. We have provided 
empirical support for the reductionist account of musical memory from a 
study of improvisational music performance, in which pianists tended to 
retain structurally important events across improvisations on simple melo- 
dies. The improvisations corresponded well with predictions from a reduc- 
tionist account of music perception. The link between performance and 
perception may be the nature of memory, which highlights the musical gist 
at the expense of other musical features. These reduced memory structures 
may be based on knowledge extracted from passive exposure to many musical 
patterns from the same style or culture. Evidence to support this claim was 
provided by a connectionist network model that learned to produce reduced 
memory descriptions for simple melodies. In this section, we explore the 
relationship between the musical improvisation findings and our reductionist 
approach to modeling musical memory. We discuss the problem of the 
recovery of rhythmic structure in music, and its relationship to the general 
problem of the recovery of constituent structure in sequence processing. We 
then compare our network model with other connectionist models that have 
been proposed for music processing. 

Musical Improvisation and Reduced Memory Structures 
The structure of memory greatly influences the content of musical improvi- 
sations. Improvisation on a theme has been described as a largely uncon- 
scious process of identifying important structural elements and applying 
creative procedures to elaborate on those elements (Johnson-Laird, 1991; 
Steedman, 1982). An important aspect of the application of the reductionist 
view to improvisation is that it relieves a potentially heavy burden on short- 
term memory. Instead of remembering each element in a musical sequence, 
only a reduced set of elements must be retained, from which improvisations 
can be generated. Johnson-Laird argued that, given an appropriate memory 
representation of musical structure, acceptable jazz improvisations can be 
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generated by relatively simple computational processes, a constraint imposed 
by the demands of real-time processing. Thus, the relationships we have 
identified among the improvisational music performances, computational 
model, and reductionist theories of music cognition may result from similar 
representational requirements. 

The view of musical memory that we propose is also closely related to 
Pressing’s (1988) account of musical improvisation. In his view, the per- 
former’s mental representation for a musical sequence consists of event 
clusters: arrays of objects, features, and processes with associated cognitive 
strengths. Improvisation consists of the generation of novel sets of event 
clusters based on a set of improvisational goals applied to the schematic rep- 
resentation of a theme, given a memory of the event clusters previously 
generated (Pressing, 1988). Our connectionist network produced reduced 
memory descriptions for “clusters” of events in which structurally important 
events dominated. Furthermore, the variations improvised by the performers 
in our experiment were related in terms of similar underlying representations 
of the musical theme, and events with greater cognitive strength occurred 
more often in the improvisations. The improvisation measures of relative 
importance correlated strongly with the theoretical predictions and network 
measures, suggesting that reductionist memory representations capture the 
cognitive strength of events in improvisations of musical variations. 

Temporal Structure and Constituent Structure 
The model of memory representation for music that we have proposed relies 
on constituent structure that is not computed by the network architecture, 
but is available as input to it. Other connectionist researchers in music have 
assumed that knowledge about constituent structure should be extracted 
from a training set using general learning algorithms, and then explicitly or 

implicitly dealt with by a network memory coding mechanism (Mozer, 1992; 
Todd, 1991). Our assumption is based on the theory that the constituent 
structures most relevant to music cognition are closely related to rhythmic 
structure (Lerdahl & Jackendoff, 1983). In this section we briefly discuss 
the relationship between rhythmic structure and constituent structure in 
music, and its relationship to general issues of constituent structure in tem- 
poral sequence processing. 

Typically, listeners are provided with many cues or markers to rhythmic 
structure in music. Musical signals contain complex forms of temporal 
organization, including periodic structure on multiple time scales (Cooper & 
Meyer, 1960; Jones & Boltz, 1989; Large & Kolen, 1994; Lerdahl & 
Jackendoff, 1983; Palmer & Krumhansl, 1990; Yeston, 1976), and temporal 
variation in expressive performance (Drake & Palmer, 1993; Palmer, 1989; 
Shaffer, Clark, & Todd, 1985; Sloboda, 1983; Todd, 1985). The temporal 
information present in individual musical sequences affords the perception 
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of rhythmic organization, including metrical and grouping structure. For 
example, mechanisms for the perception of metrical structure have been 
proposed that use only event inter-onset times and event accent information 

as input (Essens & Poval, 1985; Large & Kolen, in 1994; Longuet-Higgins & 
Lee, 1982). Additionally, expressive timing variations in musical perfor- 
mance provide cues for the perception of metrical and grouping structure 
(Palmer, 1988; Sloboda, 1983; Todd, 1985). Thus, the perception of metrical 
and grouping structure may not have to rely heavily on factors such as 
learned knowledge of melodic regularities. The perception of these forms of 
rhythmic organization combine to form the basis for the time-span segmen- 
tation (Lerdahl & Jackendoff, 1983), the constituent structure that we have 
assumed as input to our model. 

Our network made use of this input information to produce representa- 
tions that captured two kinds of musical structure. First, the network repre- 
sented the time-span segmentation of the musical sequences. It used the 
time-span segmentation to adapt its processing strategy at each level, com- 
pressing and reconstructing groups of either two or three elements, to serve 
as an efficient encoder of predetermined structure. This is an important 

result because connectionist models are notoriously deficient at representing 
constituent structures as rich as those found in music. Next, the reduced 
descriptions captured the theoretically predicted and empirically observed 
“relative importance of musical events.” To accomplish this, the network 
used time-span segmentations to learn stylistic regularities that are system- 
atically related to rhythmic structure. Such regularities, by definition, can 
only be captured by understanding a melody in relationship to knowledge of 
other melodies in that style. 

Our assumption that constituent structure would be available as input to 
a memory process may be too strong. Previously learned patterns, such as 
cadences, can also influence listeners’ perception of constituent structure 
(Lerdahl & Jackendoff, 1983). It seems likely that the perceptual processes 
responsible for segmenting a musical sequence into constituents and the rep- 
resentational processes responsible for encoding and/or recognizing con- 
stituents must interact. Reduced memory representations, such as those 
produced by RAAM networks, could mediate this interaction by facilitating 
the recognition of familiar patterns. The RAAM formalism provides a 
criterion by which we can measure the stability of any constituent’s repre- 
sentation (the well-formedness test). In some cases, perceptual processes 
may simply provide the representational mechanism with groupings of 
events; in other cases, representational processes may effectively “choose” 
groupings of events that yield stable or familiar representations. Thus, we 
envision mutually supporting roles for the perception of temporal organiza- 
tion and the formation of memory representations for melodies. 
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Comparison with Other Connectionist Models 
Other connectionist researchers have explored issues of sequential structure 
in music with discrete-time recurrent network architectures (Bharucha & 
Todd, 1989; Mozer, 1991; Todd, 1991). Recurrent networks are often trained 
to predict the next event of a sequence, given a memory of past events in the 
same sequence (Mozer, 1993), rather than being explicitly trained to develop 
a representation for an entire sequence. Recurrent networks are appealing 
for a number of reasons. First, recurrent networks are simple; they process 
a sequence one event at a time and assume no complex controi mechanism. 
Second, recurrent networks are capable, in principle, of capturing arbitrary 
sequential and/or temporal relationships, including metrical structure, 
grouping structure, and even time-span reduction. Third, recurrent neural 
networks provide naturaf models of musical expectations for future events 
(Bharucha & Todd, 1989). Finally, recurrent networks can be used for musi- 
cal composition. By connecting a network’s output units to its input units, 
novel sequences are generated that reveal what has been learned about musi- 
cal structure (Mozer, 1991; Todd, 1991). 

Recurrent networks have demonstrated some limitations in accomplish- 
ing these tasks, however. Recurrent networks have difficulty capturing rela- 
tionships that span long temporal intervals, as well as relationships that 
involve high-order statistics (Mozer, 1993); thus, they have had difficulty 
capturing the global structure of musical sequences (Mozer, 1991; Todd, 
1991). In addition, at least one study suggests that the ability of discrete- 
time recurrent neural networks to learn simple temporal relationships, such 
as would be required to extract metrical structure, is also limited (McGraw, 
Montante, & Chalmers, 1991). In attempts to make recurrent networks 
more sensitive to the global structure of music, augmented versions of recur- 
rent architectures have been proposed. One proposal is to build recurrent 
networks with hidden units that have various different constants of tem- 
poral integration. This allows the network to retain memory of past events 
more efficiently, and has resulted in networks with improved sensitivity to 
global structure (Mozer, 1992). Another proposal is to train hierarchically 
cascaded recurrent networks to explicitly extract and represent constituent 
structure (Todd, 1991). Neither of these proposals, however, (explicitly) 
uses temporal structure information to develop an emergent sensitivity to 
the relative importance of musical events, as our model does. 

In principle, recurrent networks can represent any temporal relationships 
(e.g., metrical structure). In practice, however, discrete-time recurrent 
neural networks trained with backpropagation have not learned the tem- 
poral relationships that are most relevant for music. One reason may be 
because recurrent networks are not typically given material that offers much 
information for the recovery of temporal structure. Another reason may be 
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that the architectures and learning algorithms employed are not biased 
toward discovering the temporal structures, such as metrical structure, to 
which humans are sensitive. For instance, the perception of rhythmic struc- 
ture in music may be predicted primarily from duration and accent informa- 
tion present in individual musical sequences (Large & Kolen, 1994; Longuet- 
Higgins & Lee, 1982; Palmer & Krumhansl, 1990). If recurrent networks 
were biased toward making use of relevant information about temporal 
structure, as is our network architecture, then they may be more likely to 
capture temporally relevant relationships such as relative importance. 

Limitations and Future Work 
The approach that we have described here has some limitations that high- 
light the need for further work. One regards the choice of musical materials 
in this study. The use of musical materials as simple as nursery tunes leads 
to some difficulties in interpreting the network findings. For instance, it is 
not clear whether the network’s representational capability at global struc- 
tural levels was limited by the network architecture or by the choice of train- 
ing materials. In addition, the use of material as multifaceted as music 
means the relationship between metrical accent and time-span reduction 

predictions of importance were not controlled; the restriction to a small set of 
musical materials makes it difficult to determine how the network learns 
relative importance measures independently of metrical structure or how 
one might model these structural relationships in more complex improvisa- 
tional forms of music. Thus, it is difficult to say precisely what structural 
relationships our model is capable of learning. Further study might use 
training and test melodies that control for interactions among structural 
relationships (cf. Elman, 1990). 

Another possibility for further work concerns the choice of neural net- 
work architecture. One of the constraints of the RAAM architecture is the 
requirement of an external stack control mechanism for handling intermedi- 
ate results during encoding and decoding (Pollack, 1988, 1990). In addition, 
the model requires a fixed-structure input buffer to make use of relevant 
temporal information. Although this buffer design is sufficient for handling 
simple melodies, a more complex buffer design would probably be neces- 
sary for melodies in which metrical structure and grouping structure may be 
misaligned or “out of phase” (Lerdahl & Jackendoff, 1983). Recurrent net- 
work architectures might be altered to exploit temporal information 
without necessarily entailing the restrictive design contraints of the RAAM 
architecture. 

CONCLUSIONS 

The phenomenon of musical variation can be explained by positing mecha- 
nisms that compute memory reductions. The reduced memory descriptions 
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computed here for musical melodies resulted from encoding and decoding 
mechanisms that compressed and reconstructed the original sequences. 
These mechanisms led to reduced descriptions similar to those predicted by 
reductionist theories of music. This type of memory representation abstracts 
and summarizes sections of musical material, extracting what Dowling and 
Harwood (1986) referred to as the “gist” of a musical sequence. The reduced 
representations are suitable for manipulation by other neural-style process- 
ing mechanisms, and therefore may be useful for modeling musical tasks 
such as sequence extrapolation, structure recognition, and musical improvi- 
sation. A general learning algorithm (backpropagation) provided an example 
of how the knowledge relevant to computing reduced memory descriptions 
may be extracted from a learning environment, addressing an important 
challenge to reductionist theories. These findings support reductionist theories 
of music comprehension, but suggest that the computation of musical 
reductions is not an end in itself; rather, it is a natural result of the construc- 
tion of memory representations for musical sequences. 

Most importantly, we have demonstrated the psychological plausibility 
of reductionist theories of music comprehension, by comparing evidence 
from improvisational music performance with a model of reduced memory 
representations and with theoretical predictions regarding the relative im- 
portance of musical events. The fact that musical events were weighted 
similarly in musicians’ choices of events to retain in improvisations, net- 
work encodings of the same melodies, and theoretical predictions of relative 
importance suggests that recursive distributed representations capture rele- 
vant properties of humans’ mental representations for musical melodies. 
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