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Abstract. The measurement of time is fundamental to the perception of complex, temporally structured acoustic
signals such as speech and music, yet the mechanisms of temporal sensitivity in the auditory system remain
largely unknown. Recently, temporal feature detectors have been discovered in several vertebrate auditory systems.
For example, midbrain neurons in the fish Pollimyrus are activated by specific rhythms contained in the simple
sounds they use for communication. This poses the significant challenge of uncovering the neuro-computational
mechanisms that underlie temporal feature detection. Here we describe a model network that responds selectively
to temporal features of communication sounds, yielding temporal selectivity in output neurons that matches the
selectivity functions found in the auditory system of Pollimyrus. The output of the network depends upon the
timing of excitatory and inhibitory input and post-inhibitory rebound excitation. Interval tuning is achieved in a
behaviorally relevant range (10 to 40 ms) using a biologically constrained model, providing a simple mechanism
that is suitable for the neural extraction of the relatively long duration temporal cues (i.e. tens to hundreds of ms)
that are important in animal communication and human speech.
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Introduction

The timing of sensory stimuli carries information crit-
ical to a wide range of behaviors. Temporal patterns
are important for visual object recognition in humans
(Lee and Blake, 1999) and for visual species recog-
nition in a variety of animals (Salmon and Atsaides,
1968; Jenssen, 1970; Lloyd, 1975). Similarly, the tem-
poral structure of sounds is essential for auditory stream
segregation (Bregman, 1990), music perception (Large

and Jones, 1999), and animal communication (Hoy
et al., 1982; Huber and Thorson, 1985; Gerhardt, 1994;
Myrberg, 1997). Despite the widespread importance of
temporal analysis in behavior, relatively little is known
about the fundamental neuro-computational mecha-
nisms that underlie the extraction of temporal informa-
tion. In this paper we develop a computational model
of a brain mechanism for temporal feature extraction.

Neurons that respond selectively to temporal fea-
tures of communication sounds have been discovered
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in the central auditory systems of a variety of ani-
mal species (Rose and Capranica, 1985; Plassmann,
1985; Langner and Schreiner, 1988; Feng et al., 1990;
Diekamp and Gerhardt, 1995; Crawford, 1997; Penna
et al., 1997; Bodnar and Bass, 1999). In these exam-
ples, action potentials produced by primary afferent
neurons are temporally synchronized to the low fre-
quency sounds often used in communication, and thus
provide a temporal representation of sounds to higher-
order circuits. Trains of action potentials generated in
the auditory nerve may then be used to compute a
rate-place code in higher auditory areas. The compu-
tational mechanisms that transform peripheral trains
of action potentials into feature selective auditory re-
sponses, however, are only beginning to be understood
(Langner, 1992; Hooper, 1998; Alder and Rose, 1998,
2000; Fortune and Rose, 2000; Casseday et al., 2000).

The African fish Pollimyrus has been developed as
a model system for studying auditory temporal com-
putation. These fish use simple low frequency sounds
for courtship communication (Fig. 1) and have gas-
filled bladders in their ears for detecting sound pressure
(Fletcher and Crawford, 2001). Like other fishes, they
lack an elaborate peripheral structure for frequency
analysis (e.g., the mammalian cochlea), and do not
exhibit the degree of mechanical frequency decom-
position that is seen in other vertebrates (Popper and
Coombs, 1982). Thus temporal analysis of sounds ap-
pears to be particularly important in fishes.

Male Pollimyrus produce grunts and moans in alter-
nation while interacting with females on their territories
(Crawford, 1997; Crawford and Huang, 1999). Grunts

Figure 1. Natural communication sounds produced by a male Pol-
limyrus adspersus. An entire acoustic display, recorded with a hy-
drophone, is shown (below), and expanded waveform segments are
shown (above) for each of the three constituent sounds, illustrating
the fine structure and differences in inter-click interval (ICI). Adapted
from Crawford (1997), with permission.

are acoustic click trains (click duration ≈5 ms) with
an inter-click-interval (ICI) of about 18 ms and dura-
tion of 250 ms. Moans are continuous, near-sinusoidsal,
sounds with a period of about 4 ms and duration of
800 ms. The sounds made by closely related Pollimyrus
species (P. adspersus and P. isidori) are clearly distin-
guished by differences in the fundamental period of
these sounds and individual males are so stereotyped in
their production that the sounds also serve as individual
signatures among conspecific males (Crawford et al.,
1997). The fish readily discriminate small differences
between the sounds of different species and different
individuals (Marvit and Crawford, 2000). One of the
major functions of the Pollimyrus auditory system is
the analysis of these simple courtship sounds.

Neurophysiological studies of Pollimyrus indicate
that an initial temporal representation of sound, created
in the ear and auditory nerve, is used by central brain
circuits to compute specific temporal features thus cre-
ating a rate-place code for time intervals. Responses
to tones in the auditory nerve of Pollimyrus consist
of trains of spikes, sustained for the duration of the
tone, and the inter-spike intervals correspond exactly
to the stimulus period (±20 µs) with a single spike
corresponding to every stimulus cycle (Kozloski and
Crawford, 1997, 1998a; Suzuki and Crawford, 2000;
Suzuki et al., submitted). Responses to grunt-like click
trains are similar, with spikes synchronized to the in-
dividual clicks. These responses are largely indepen-
dent of the period of the stimulus used. In contrast,
the synchronization of midbrain neurons is less precise
and some neurons show strong response-dependence
on stimulus period. Interval selective neurons are ac-
tivated best over a narrow range of inter-click inter-
vals when stimulated with click trains, seen by plotting
action potential rate as a function of ICI (interval-
selectivity curves; Crawford, 1997). These feature se-
lective neurons represent a significant transformation
of the input to this area of the brain and our focus here
is on the computational mechanism that yields these
transformations.

We have hypothesized that the selectivity of mid-
brain neurons emerges through a network computation
that depends upon a simple set of synaptic connec-
tions and well known intrinsic properties of neurons
(Crawford, 1997; Cudmore et al., 1998). Specifically,
synaptic inhibition and subsequent rebound depolar-
ization (inhibitory rebound) can form the basis of a
temporal gate, with the duration of inhibition deter-
mining the temporal position of a window during which
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Figure 2. A model of interval selectivity based on post-inhibitory
rebound. A: A schematic model of the interval selective circuit. Neu-
ron M projects from the medulla, branches, and excites neurons I and
S in the mesencephalon. Neuron I is an inhibitory interneuron whose
input to S is slightly delayed by the M to I synapse. B: The intracellu-
lar events that might be recorded from the interval selective neuron S
during auditory stimulation. A single click yields an excitatory post
synaptic potential (EPSP) and an inhibitory post synaptic potential
(IPSP) followed by rebound excitation (PIR), but no action potential.
However a second click, appropriately timed, will coincide tempo-
rally with post inhibitory rebound, generating an action potential.
With click trains as input, the circuit shown in A is interval selective,
having a preferred interval at which the probability of firing action
potentials reaches a maximum.

inputs are facilitated (Edwards, 1983; Sullivan, 1982;
Margoliash, 1983; Casseday et al., 1994). In order for
this mechanism to generate interval selectivity for click
trains in Pollimyrus, selective neurons must receive ex-
citatory input from neurons that deliver synchronized
spike trains, receive inhibitory input that is similarly
synchronized and which yields long lasting inhibition
and produces rebound depolarization (Fig. 2A).

In this paper we investigate the inhibitory gating hy-
pothesis by developing a relatively simple, biophysi-
cally constrained network model, and making quanti-
tative comparisons of its response properties to those
of real interval-selective neurons studied in the mid-
brain of Pollimyrus. We investigate the properties of the
proposed mechanism through mathematical modeling.
The biophysical properties used in the model are de-
rived from voltage clamp studies of neurons in a variety
of animals, but are assumed to exist also in Pollimyrus.
We begin by developing an initial model based purely
on inhibitory gating, and we compare its behavior to
that of real neurons. Based on this analysis we augment
the model, adding synaptic depression, endogenous os-
cillation, and noise, and this improves the model’s abil-
ity to capture the physiological data. Based on the aug-
mented inhibitory gating model, we make predictions
regarding the model’s response to pure tone stimuli,
and evaluate these predictions by comparison with the

available physiological data for pure tones. Implica-
tions for general auditory computation are discussed.

An Inhibitory Gating Model

A simple network model, proposed to explain interval
selective properties of midbrain neurons observed in
Pollimyrus (Crawford, 1997), is illustrated in Fig. 2A.
The selective midbrain neuron, (S), receives both exci-
tatory input from the medulla (M) and inhibitory input
through an interneuron (I). The properties of synaptic
inputs in combination with the properties intrinsic to
a given selective output neuron, determine the particu-
lar time interval that is optimal for the output neuron.
An IPSP in the model selective neuron (S) gives rise to
post-inhibitory rebound when it is of sufficient strength
and duration (Fig. 2B).

With a single click as an auditory stimulus, the model
yields an EPSP and an IPSP, but no action potentials.
A succession of appropriately timed clicks, however,
causes neuron S to generate action potentials because
each EPSP coincides with the PIR from the previous au-
ditory input. Thus, the neuron generates a large number
of action potentials at the best ICI, and action poten-
tials generated in this manner are phase locked to the
stimulus click train. When the time between clicks is
too short or too long the output decreases; if the ICI is
sufficiently different, such that the EPSP and PIR no
longer coincide, no action potentials are generated.

Synaptic Input

We begin with a model for the input to the selective
cell. Both excitatory and inhibitory inputs are mod-
eled as conductance changes in the selective neuron
S, caused by presynaptic action potentials in M and
I (Fig. 2A). The conductance changes are described
using the following alpha equations (Rall, 1967).

gE (t) =
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Equations (1A) and (B) describe time-varying synap-
tic conductances in the selective neuron S activated
due to the arrival of presynaptic action potentials. The
tp represent the times of action potentials in M, and
� is the total time delay between action potentials at
the medullary neuron (M) and the inhibitory interneu-
ron (I). The conductance terms ḡE and ḡI represent
the maximal conductance changes produced by the ex-
citatory and inhibitory inputs, and the times at which
the input conductances reach their maximal values are
determined by the time constants τE and τI .

The excitatory current IE = gE (t)(V −VE ) gives rise
to EPSPs and the inhibitory current II = gI (t)(V −VI )
gives rise to IPSPs. Here, VE = 0 are VI = −80 are the
reversal potentials for excitation and inhibition, respec-
tively. Thus, the conductance change due to input from
M results in suprathreshold depolarization of S, and the
conductance change due to input from I hyperpolarizes
S. The relative timing of excitatory and inhibitory input
(as determined by τE , �, and τI ) plays a fundamental
role in determining the tuning of the interval selective
neuron.

PIR and Leak Currents

Post-inhibitory rebound (PIR) is a long-duration, low-
threshold spike produced in response to inhibition,
thus the PIR current is crucial to providing a tempo-
rally selective response in our model. Following Wang
et al. (1991), we modeled the PIR current by anal-
ogy to the fast sodium current of Hodgkin-Huxley,
IP = gP s3

∞h(V − VP ). The conductance, gP deter-
mines the time course of rebound depolarization, and
VP = 120 is the reversal potential for PIR. This expres-
sion was originally proposed to model the T-type Ca++

current of relay cells of the cat halamus (Coulter et al.,
1989; Wang et al., 1991). Because we lack voltage-
clamp data for these cells, we use a simplification of
the original model (Wang and Rinzel, 1993) that retains
only two dynamic variables, membrane potential V and
inactivation h, while preserving the basic behaviors of
the original model.

The activation variable s has fast dynamics, and
so is replaced by the steady state activation function
s∞(V ) = 1/(1 + exp(−(V − 70)/7.8). The dynamics
of inactivation is described by Eq. (2):

dh

dt
= φh

τh(V )
[h∞(V ) − h], (2)

where h∞(V ) = 1/(1 + exp((V − 84)/11)), and the
time constant for inactivation is also voltage depen-
dent, τ∞(V ) = h∞(V ) exp((V + 162.3)/17.8). The
dimensionless parameter φh scales the time course of
inactivation. The constants in these equations are the
same as those reported by Wang and Rinzel (1993),
with the exception that the half-activation points for
s∞(V ), and h∞(V ) have been shifted slightly in the
negative direction.

The leak current IL = gL (V − VL ) represents the
sum of all passive currents. The conductance gL deter-
mines the passive time constant of the membrane, and
the reversal potential VL is responsible for setting the
resting level of the neuron. When set within a certain
range, however, VL can qualitatively alter the steady-
state behavior of the neuron, causing it to generate an
endogenous subthreshold oscillation (cf. Wang et al.,
1991), a possibility we explore below. Together, the PIR
and leak currents determine the intrinsic time scale of
the selective neuron (parameters gL , φh , and gL ) affect-
ing the width of the cell’s interval selectivity function,
and, to some extent, its peak.

Hodgkin-Huxley Currents

We also use a simplified model for action potential gen-
eration, because detailed patch-clamp data is not avail-
able for the Pollimyrus neurons. For this job we choose
a dimensionality-reduced form of the Hodgkin-Huxley
sodium (INa) and potassium (IK) currents (Fitzhugh,
1961; Krinskii and Kokoz, 1973; Rinzel, 1985;
Rose and Hindmarsh, 1989), with a persistent (non-
inactivating) sodium current (INa(P)) (see Wang, 1994).
The postassium current has the form IK = gKn4(V −
Vk), where the inactivation variable n has the dynamics

dn

dt
= φn

τn(V )
[n∞(V ) − n], (3)

and n∞ = αn/(αn + βn), αn(σK, V ) = −0.01(V +
45.7 − σK)/(exp(−0.1(V + 45.7 − σK)) − 1), βn(σK,

V ) = 0.125 exp(−(V +55.7−σK)/80), τn = 1/(αn +
βn), φn = 200/7, gK = 45 mS/cm2, and VK =
−80 mV.

The sodium current is INa = gNam3
∞(0.85 − n)(V −

VNa), where inactivation, h, is replaced by (0.85 − n)
according to the empirical observation that during spike
generation the kinetic variables h and n approximately
satisfy the linear relationship n + h = 0.85 (FitzHugh,
1961). In addition, due to its fast time course, the
dynamic variable m is replaced by its equilibrium
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function m∞ = αm/(αm + βm), where αm(σNa, V ) =
−0.1(V + 29.7 −σNa)/(exp(−0.1(V + 29.7 −σNa)) −
1), βm(σNa, V ) = 4 exp(−(V +54.7−σNa)/18), gNa =
63 mS/cm2, and VK = +55 mV. The persistent sodium
current, (INa(P)) is similar to (INa) but without inacti-
vation, INa(P) = gNa(P)m3

∞(V − VNa), and gNa(P) =
13.5 mS/cm2. The parameters σK, σNa, and σNa(P) are
used to determine the action potential threshold of the
model neuron.

Assembling the Model

Summarizing to this point, our model of interval selec-
tivity contains seven currents, which can be grouped
into three functional categories. First, presynaptic in-
puts are modeled using excitatory (IE ), and inhibitory
(II ) currents, whose time course primarily determines
the tuning of the selective cell. Second, intrinsic prop-
erties of the selective neuron are captured as a post-
inhibitory rebound (PIR) current (IP ) plus a leak cur-
rent (IL ). The PIR current is responsible for the interval
selective nature of the cell; together IP and IL deter-
mine the intrinsic time scale of the post-inhibitory re-
bound, which is the primary determinant of the width
of the interval selectivity function. Third, action poten-
tial generation is captured using simplified Hodgkin-
Huxley sodium (INa) and potassium (IK) currents, plus
a persistent sodium current (INa(P)). These currents
generate action potentials, and have subtle effects on
other aspects of cell behavior. Equation (4) combines
these into a differential equation that relates the time
derivative of membrane voltage to the seven membrane
currents.

Cm
dV

dt
= −IE − II − IP − IL − INa − IK − INa(P)

= −gE (t)(V − VE ) − gI (t)(V − VI )

− gP s3
∞h(V − VP ) − gL (V − VL )

− gNam3
∞(.85 − n)(V − VNa)

− gK n4(V − VK) − gNa(P)m
3
∞(V − VNa)

(4)

Here, Cm = 1 µF/cm2. To investigate whether this
model adequately reproduced the observed physiology,
model simulations were written in Matlab (5.3) and
run on Sun Workstation (Solaris 4.4.1). The differential
equations describing the behavior of the interval selec-
tive cell (Eqs. (2)–(4)) were solved numerically using
Matlab’s variable-order stiff solver (Matlab function
ode15s) and some simulations were verified using a

modified Rosenbrock formula of order 2 (Matlab func-
tion ode23s; see Shapine and Reichelt, 1997).

Results for the Inhibitory Gating Model

Interval Selectivity

We first ran several simulations to investigate the abil-
ity of the model circuit to operate as a tuned temporal
filter, responding to clicks presented at some inter-click
intervals but not others. Input from the medulla was as-
sumed to be time locked to the acoustic stimulus, and
to consist of one action potential per click. Action po-
tential times (tp) were used to generate a time course
of input conductances, both excitatory gE (t) and in-
hibitory gI (t), according to Eqs. (1A and B). The con-
ductance changes drove the model and each simulation
provided a trace of membrane potential in response to
a click train. Nine stimulus ICIs were used (9, 10, 13,
18, 24, 33, 44, 59, and 80 ms; ICI’s for which data was
collected in the midbrain neurons) each click train had
a duration of 100 ms.

To constrain the fits of the model output to data from
Pollimyrus midbrain neurons, we identified physiolog-
ically plausible parameter ranges using measurements
that were available for other neural systems from the
literature, because the appropriate biophysical mea-
surements have not yet been made in Pollimyrus. To
test the tuning properties of the circuit, the parame-
ters τE , τI , and � (Eq. (1A) and (B)) were then var-
ied to manipulate the timing of EPSPs and IPSPs, and
the parameters gP , gL , and φ, were varied to control
the time course of post-inhibitory rebound. We fixed
VL = 2 mV, ḡE = .25 nS/cm2, and ḡI = .5 nS/cm2.

Representative results of these simulations are il-
lustrated in Fig. 3. Panel A (top) shows stimulation
at several ICIs, with timing parameters τE = .75 ms,
τ1 = 1.5 ms, and � = 2.25 and rebound parameters
φh = 6, gP = 1.2 nS/cm2, and gL = .6 nS/cm2. A sin-
gle stimulus ICI (10 ms) elicits a train of phase-locked
action potentials; at shorter and longer ICIs membrane
potential follows the stimulus (separate EPSPs,IPSPs,
and PIRs are clearly visible at 24 ms), but no action
potentials are generated. The model neuron is tuned to
an ICI of 10 ms. Panel A (bottom) shows three selectiv-
ity functions that result from increasingly larger values
of τE , τI , and �: best ICI is increased. Thus, other
things being equal, these three parameters determine
the best ICI of the model circuit. Panel B (top) shows
membrane potential traces for a circuit tuned to 18 ms,
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Figure 3. Interval selective responses modeled using the inhibitory gating hypothesis. A: Top. The response of a single model neuron (input
timing: τE = .75 ms, τI = 1.5 ms, and � = 2.25 and rebound timing: φh = 6, gP = 1.2 nS/cm2, and gL = .6 nS/cm2) to stimulation at
five different ICIs. Best ICI is 10 ms. Bottom. An interval selectivity curve for the neuron above (solid line) shown with the responses of two
other model neurons generated by varying input timing (dashed: τE = 1 ms, τI = 2 ms, and � = 3 ms; dotted: τE = 2 ms, τI = 4 ms, and
� = 6 ms). Best ICIs are 13 and 18 ms respectively. B: Top. The response of a single model neuron to stimulation at five different ICIs (input
timing: τE = 2 ms, τI = 4 ms, and � = 6 ms; rebound timing: φh = 4.5, gP = 0.9 nS/cm2, and gL = 0.45 nS/cm2). The bandwidth of
the neuron is wider than the neuron of Panel A due to a slower time course of PIR. Bottom. An interval selectivity curve for the neuron above
(solid line) shown with the responses of two other model neurons generated by varying input as in Panel A. Interval tuning and bandwidth are
adjustable independently, to some extent, using these two different sets of parameters.

with τE = 1 ms, τI = 2 ms, and � = 3 ms, where the
values of the rebound parameters have been increased
to slow the intrinsic time course of the selective cell
using parameter values φh = 4.5, gP = .9 nS/cm2, and
gL = .45 nS/cm2. The effect is to increase the band-
width, and this manipulation is effective across a range
of ICIs as illustrated by the additional selectivity func-
tions (Panel B, below).

These simulations show that within a biophysically
constrained parameter range the model behaves as a
tuned temporal filter. Variations in the relative tim-
ing of excitatory and inhibitory input act to tune the
response of individual circuits, determining best ICI.
Finally, variation in the intrinsic properties of the se-
lective neuron govern the time course of PIR, and pri-
marily determine the width of the selectivity function.

Comparison with Raster Data

Figure 4 shows several raster plots recorded from a
single interval selective midbrain neuron (Crawford,
1997). The physiology matches the above simulation
in certain respects, but it also reveals departures from
the model’s predictions. In agreement with the model,
the neuron is tuned (best ICI = 18 ms) with a moderate

bandwidth (compare with Fig. 3B). At best ICI it gen-
erates (at most) one action potential per click, and
these are strongly phase-locked with the click train
(pointer in Panel C). However, several other aspects
of the observed physiology are not predicted by the
above model.

First, action potentials are seen in response to the first
click at every ICI (pointer in Panel A), and the over-
all rate of action potentials diminishes over the length
of each click train. This neuron also produces strong
responses at ICI’s far from its best ICI (e.g., 80 ms).
Second, at very long ICI’s multiple action potentials
follow the initial spike, and their timing approximately
matches the best ICI of the neuron (18 ms, pointer in
Panel H). Third, this neuron displays spontaneous ac-
tivity, with action potentials recorded both before and
after the click trains (pointers in Panel G).

An Augmented Model: Synaptic Depression,
Endogenous Oscillation, and Noise

The above observations point to several ways in which
the original model might be augmented to better fit
the physiology. The first discrepancy is that responses
are usually seen to the first click and diminish over the
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Figure 4. Full raster recordings for a single interval selective midbrain neuron. It is tuned for an inter-click interval of 18 ms and at best ICI it
generates one action potential per click, strongly phase-locked with the click train (pointer in Panel C). Action potentials are seen in response
to the first click at every ICI (pointer in Panel A), and the overall rate of action potentials diminishes over the length of each click train. Strong
responses are seen at ICI’s longer than best ICI (e.g., 80 ms): multiple action potentials follow the initial spike, and their timing approximately
matches the best ICI of the neuron (pointer in Panel H). The neuron also displays spontaneous activity, with action potentials recorded both
before and after the click trains (pointers in Panel G).
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length of the click train. If a single stimulus click causes
sufficient depolarization to generate an action potential,
interval selective properties might arise from an inter-
action of factors: a decrease in synaptic efficacy, and
a coincidence of EPSPs with rebound depolarization
(inhibitory gating). This implicates a role for synap-
tic depression (Abbott et al., 1997; Varela et al., 1997;
Chance et al., 1998). The involvement of synaptic de-
pression also predicts that for very long ICIs, spikes
would be generated in response to every click, and this
prediction is supported by the rasters for 44, 59, and
80 ms click trains.

We included synaptic depression in the augmented
model. The continuous time, fast synaptic depression
model of Chance et al. (1998), was analytically solved
to produce following difference equations for modify-
ing the conductance terms ḡE and ḡI over the course
of a click train. For excitatory synapses:

ḡE(1) = ḡE

ḡE(p+1) = 1 − (1 − dḡE(p)) e−�t/τ (5A)

and similarly, for inhibitory synapses:

ḡI (1) = ḡI

ḡI (p+1) = 1 − (1 − dI ḡI (p)) e−�t/τ (5B)

Here �t = tn+1 − tn , is the time between action poten-
tials, which is equal to the fixed ICI of the click train
for the deterministic model. However, the model is also
general enough to allow different ICIs within the same
click train (below we add temporal jitter). The parame-
ters dE and dI are the depression factors for excitatory
and inhibitory synapses, respectively. Due to the effect
of inhibition on the magnitude of PIR, we allow dif-
ferent depression factors, but for simplicity these are
always manipulated together, dI = d2

E . For the studies
reported here the value of dE varies between .85 and
1.0. The recovery rate (τ ), was the same for both types
of synapses, and varies between 100 and 300 ms.

Figure 5A shows the result of one run of the model
with synaptic depression, where input strength was
gE = 0.4 nS/cm2 and gI = 0.35 nS/cm2 and depres-
sion parameters were set to dE = 0.9, dI = 0.81, and
τ = 300 ms. A spike is produced in response to the first
click of every train, spikes diminish over the length of
the click train, and for slow click trains, an action poten-
tial is generated in response to every click. This model
neuron displays selectivity for a 13 ms ICI (input tim-
ing: τE = 1 ms, τI = 2 ms, and � = 3) and interval se-
lectivity arises from an interaction of two physiological

Figure 5. Behavior of the augmented model. A: Synaptic depres-
sion. Input strength parameters were chosen so that the neuron would
generate an action potential for every click, gE = 0.4 nS/cm2 and
gI = 0.35 nS/cm2, but with synaptic depression (Eqs. 5A and B) so
that spikes diminished for non-preferred ICIs, dE = 0.9, dI = 0.81,
and τ = 300 ms. A spike is produced in response to the first click
of every train, spikes diminish over the length of the click train, and
for slow click trains, an action potential is generated in response to
every click. This model neuron displays selectivity for a 13 ms ICI
(input timing: τE = 1 ms, τI = 2 ms, and � = 3; rebound timing:
φh = 6, gP = 1.2 nS/cm2, and gL = .6 nS/cm2). B: Endogenous
oscillation. Response to a single click. Parameters were chosen such
that rebound depolarization would be strong enough to cause an ac-
tion potential gE = 0.25 nS/cm2 and gI = 0.5 nS/cm2, and leak
current reversal potential was set within a range that gives rise to
endogenous oscillation VL = −77.5.

mechanisms. A decrease in synaptic efficacy causes ac-
tion potentials to cease after a time for non-preferred
ICIs, but coincidence of EPSPs with PIR and preferred
ICIs allows action potentials to continue for preferred
ICI’s (rebound timing: φh = 6, gP = 1.2 nS/cm2, and
gL = .6 nS/cm2).

A second modification to the basic model is sug-
gested by the additional spikes observed between clicks
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in slow click trains. These provide evidence that post-
inhibitory rebound alone can generate sufficient depo-
larization to cause action potentials in these neurons.
Moreover, the fact that multiple rebound spikes can be
seen at slow ICIs suggests an additional possibility: a
spontaneous, subthreshold oscillation that entrains to
stimulus clicks. This interpretation is consistent with
known mechanisms of PIR (cf. Wang et al., 1991), and
it could also contribute to an explanation of observed
spontaneous activity.

The model described above is capable of generating
such behavior with only a small change in parame-
ter values. As leak current reversal potential (VL ) is
lowered, the model neuron undergoes a Hopf bifurca-
tion, and begins to generate an endogenous oscillation,
consistent with the behavior described by Wang et al.
(1991) for a similar PIR model. Figure 5B shows one
simulation in which the VL was lowered to a value of
−77.5 mV (other parameters were set as in Fig. 3A). In
this simulation, the neuron generates an initial rebound
of sufficient amplitude to generate an action poten-
tial, and the following oscillation is in the subthreshold
range. The model neuron generates endogenous oscil-
lation for a range of values of VL , with the value of the
parameter determining the frequency and amplitude of
the oscillation. If such behavior were present in the
midbrain cells, this could explain the multiple rebound
spikes observed in the raster plots.

Lastly, the variability of the selective responses re-
quires a final modification to the basic model, the ad-
dition of two noise sources to model the variability ob-
served in midbrain physiology. The first noise source
is at the input. Action potentials in the medulla are
known to be synchronized to acoustic input with tem-
poral jitter, and observed synchronization coefficients
fall primarily within the range 0.9 < r < 1 (Suzuki
et al., 2002). To model this property of midbrain input,
gaussian noise (mean 0, variance Qm) was used to jit-
ter action potential times (tp), where Qm ranged from
0.25 to 1.0 ms2. An additional stochastic component
was added to Eq. (4) to model variability in the mem-
brane potential of the interval selective cell itself. A
gaussian noise current (mean 0, variance QV ) captured
variability in the simulated neuron, as in Eq. (4A).

C
dV

dt
= −IE − II − IP − IL − INa − IK

− INa(P) −
√

QV ζ (t) (4A)

The noise current is instrumental in producing variabil-
ity in rebound spike times, and, in conjunction with en-

dogenous subthreshold oscillations, can produce spon-
taneous activity in the model neurons, described next.

Results for the Augmented Model

Fits were generated to match the selectivity curves
for nine midbrain neurons (Crawford, 1997) matching
the observed physiology in detail, by examining the
recorded raster plots and chosing parameters to mimic
each cell’s behavior, as described above. First, we il-
lustrate this process by presenting a complete raster
for one model neuron, shown above as Fig. 4. Next, we
evaluate the fits to all nine cells by comparing interval
selectivity curves of the model with those of the mid-
brain neurons. Finally, we verify the parameter values
by comparing the pure tone responses of the midbrain
neurons to those of the model. Parameter values were
taken from the click train fits, so the simulations pro-
vided true predictions of pure tone responses, and thus
a strong test of the model. As before, simulations were
run by numerically solving the model Eqs. (2), (3) and
(4A). For the following stochastic simulations, how-
ever, both Matlab ODE solvers were modified for sim-
ulation of stochastic differential equations (Hairer and
Wanner, 1991).

A Complete Model Raster

The augmented model was used to generate fits for the
rasters of Fig. 4; Fig. 6 shows the rasters generated by
the model. The complete parameter set for this simula-
tion is provided in column 3 of Table 1. The behavior of
the augmented model matches this neuron’s physiology
in most respects. The model neuron is well tuned with a
best ICI of 18 ms, and at its best ICI it generates an ac-
tion potential for almost every click. Action potentials
near the best ICI are also strongly phase-locked with
the click train (pointer in Panel C). Moreover, action
potentials are seen in response to the first click of the
train at every ICI (pointer in Panel A), and the overall
rate of action potentials diminishes over the duration
of each click train. The model also produces strong re-
sponses at longer ICIs. For the slow click trains (e.g.,
80 ms) multiple action potentials follow the initial spike
due to PIR and endogenous oscillation, thus and their
timing approximately matches the best ICI of the neu-
ron (pointer in Panel H). Finally, the model displays
spontaneous activity, with action potentials recorded
both before (pointer in Panel D) and after (pointer in
Panel G) the click trains. Spontaneous activity is due
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Figure 6. Full rasters for the augmented inhibitory gating model (compare with Fig. 4). The model neuron is well tuned with a best ICI of
18 ms, where it generates an action potential for almost every click, and action potentials near the best ICI are strongly phase-locked with the
click train (pointer in Panel C). Action potentials are seen in response to the first click of the train at every ICI (pointer in Panel A), and the
overall rate of action potentials diminishes over the duration of each click train. The model also produces strong responses at longer ICIs. For
slow click trains multiple action potentials follow the initial spike due to PIR and endogenous oscillation, thus and their timing approximately
matches the best ICI of the neuron (pointer in Panel H). Finally, the model displays spontaneous activity, with action potentials recorded both
before (pointer in Panel D) and after (pointer in Panel G) the click trains.
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Table 1. Parameters and constants, and the value ranges used in the model to generate fits to the physiological data.

Cell 302 308 406 407 602 502 504 603 605 Min Max Mean

Input timing

τE ms 1.8 1.0 3.0 1.5 1.5 1.4 1.4 1.0 1.3 1.0 1.8 1.4

τI ms 3.6 1.0 6.0 1.5 1.5 1.4 1.4 1.0 1.3 1.0 3.6 1.7

� ms 5.4 3.0 4.5 4.5 4.5 4.2 4.2 3.0 3.9 3.0 5.4 4.1

Rebound timing

φh 6.6 4.2 9.0 30.0 6.0 30.0 30.0 10.0 27.0 4.2 30.0 17.0

gT mS/cm2 1.320 0.840 1.800 6.000 1.200 6.000 6.000 2.004 5.400 0.840 6.000 3.396

gL mS/cm2 0.660 0.420 0.900 3.000 0.600 3.000 3.000 1.002 2.700 0.420 3.000 1.698

Input strength

ḡE mS/cm2 0.050 0.100 0.400 0.150 0.025 0.550 0.550 0.800 0.800 0.025 0.800 0.381

ḡI mS/cm2 0.600 0.500 0.500 0.900 0.525 0.750 0.750 0.400 0.400 0.400 0.850 0.586

AP threshold

σK mV 20.83 16.20 17.37 12.37 18.20 9.20 9.33 24.95 11.03 9.20 24.95 14.51

σNa mV 13.83 9.20 10.37 5.37 11.20 2.20 2.33 17.95 4.03 2.20 17.95 7.51

σNa(P) mV 5.83 1.20 2.37 −2.63 3.20 −5.80 −5.68 9.95 −3.97 −5.80 9.95 −0.49

Synaptic depression

dE 0.95 0.94 0.95 0.97 0.85 0.99 0.99 0.99 0.99 0.85 0.99 0.96

dI 0.90 0.88 0.90 0.94 0.72 0.98 0.98 0.98 0.98 0.72 0.98 0.92

τ ms 300 300 300 300 120 300 200 300 100 100 300 247

Rebound type

VL mV −77.00 −77.00 −77.75 −76.25 −76.50 −76.50 −76.50 −76.25 −77.00 −77.75 −76.25 −76.75

Noise

Qm ms 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 0.5 1.0 0.8

QV mV 2.0 2.0 2.0 8.0 2.0 1.0 1.0 1.0 1.0 1.0 8.0 2.2

Conductances and time constants subscripted E describe events in S due to the M to S synapse (EPSP), and those with subscript I describe the
events in S due to the I to S synapse (IPSP; see Fig. 2). The value ranges shown for input conductances (ḡE , ḡI ) are the maximum values,
and input time constants denote time required for the alpha equations to reach maximum conductance. The leak (L) and PIR (P) currents are
endogenous to neuron S.

to an interaction between endogenous subthreshold os-
cillation and the membrane potential noise. Finally, the
model matches the observed level of synchronization
well, with modest synchronization at short ICIs, strong
synchronization near best ICI, and weak synchroniza-
tion at longer ICIs. The latter effect is due primarily to
the generation of multiple action potentials in response
to each click.

Fits: Click Train Data

We next fit selectivity curves for nine neurons from
three different fish, to which stimuli were presented
at 125 dB peak re: 1 µPa (Crawford, 1997). Thirty-
two runs were simulated for each model neuron, and
for each click train of a given inter-click-interval. Each

click train was 400 ms in duration, and in addition,
50 ms of prestimulus behavior and 50 ms of poststimu-
lus behavior was simulated to match the raster record-
ings (as shown in Fig. 6). To fit the click train data,
interval-selectivity curves were generated for direct
comparison with the physiology. Input timing, input
strengths (excitatory and inhibitory), rebound timing,
rebound characteristics (gated versus oscillating), and
synaptic depression parameters were chosen for each
cell, using the techniques described above, to match
the raster recordings as accurately as possible over the
full range of stimulus ICIs. In addition, noise levels
and thresholds were chosen to match individual physi-
ology. To evaluate the parameter choices, two types of
interval selectivity curves were calculated, total spikes
per stimulus train (Fig. 7, left) and mean spikes per



136 Large and Crawford

Figure 7. Interval selectivity curves measured both as spikes per train (left column) and spikes per click (right column) for nine cells (rows).
Midbrain neuron data are shown in black (with error bars), model fits are shown in gray. Correlation coefficients and significance levels for the
fits are shown to the right. Note that all neurons were initially tested in the 10–80 ms range, but several (neurons 5–6, and 8–9, from the top) gave
little or no response except at the shortest intervals (10–13 ms). These neurons were re-tested in the shorter interval ranges shown (6–14 ms)
where they produced robust responses. Model fits were restricted to these ranges.
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stimulus click (Fig. 7, right). Parameters for each cell
were manipulated until the both curves correlated sig-
nificantly (p < .05) with the physiologically observed
curves. Complete parameters for all nine fits are pro-
vided in Table 1.

Figure 7 compares the selectivity curves for the nine
model neurons with the physiological data. Two fea-
tures of this display are striking. The first is that in-
terval selective midbrain neurons display quite varied
physiology. Broadly speaking, cells are tuned either to
shorter intervals (7–10 ms) or to longer intervals (13–
24 ms). Some are quite sharply tuned, other selectivity
functions are rather broad, and two interval-selective
neurons displays double-peaked selectivity functions.
The second striking feature is the quality of the model
fits to this data. Correlation coefficients ranged from
.405 to .895 for spikes per train, and from .555 to .923
for spikes per click. With one exception, both mea-
sures were highly correlated for all cells; in one case
spikes per click curves were highly correlated, how-
ever, the very low overall number of spikes made a
closer fit impossible in terms of spikes per train. Fi-
nally, detailed physiology matched the model’s behav-
ior well (not shown). The main discrepancy was that
overall the model was more strongly synchronized to
the click trains (mean r = .893) than the midbrain neu-
rons (mean r = .504). Thus, the model interval selec-
tive neurons, generated through the mathematical im-
plementation of an inhibitory gating mechanism, gen-
erated responses that were remarkably close to those
observed in the auditory midbrain of Pollimyrus. Re-
sponses to click trains found excellent correspondence
both in the temporal patterns of output spikes, and in
the ICI-dependence of the responses.

Predictions: Pure Tone Responses

Our model was developed to provide insight into the
mechanisms that underlie sensitivity to click train in-
tervals, and the model worked well for this stimulus. To
further evaluate the model, we examined responses to
a different kind of stimulus, pure tones. In the physio-
logical study, each neuron was stimulated with several
pure tones (Crawford, 1997), and pure tones elicited
distinctive, non-phase locked, responses in interval se-
lective neurons. At least one complete raster response
for a tone presented at 20–30 dB re: 1 µPa was available
for seven of the nine interval selective neurons. Using
the parameters that successfully simulated the response
of individual neurons to click trains (Figs. 6 and 7), we

attempted to predict responses of these same neurons
to tones of various frequencies. Thus, the model was
used to obtain a true prediction of the response to a very
different kind of stimulus, and this provided a strong
test of the model. Initial runs indicated that the most
important discrepancy between model predictions and
midbrain responses to tones was that overall the model
generated fewer action potentials. Surmising that the
reason for this might be stronger input from the medulla
for pure tones, we increase the input strength parame-
ters by 25% for all model neurons and then re-ran the
simulations. Other parameters were identical to those
fit to click train data.

Many of the selective midbrain neurons responded
to tones with a short burst of action potentials at tone
onset. The model neuron predicted onset responses for
several parameter sets. After the initial burst of action
potentials caused by early excitation, the rapid succes-
sion of inputs causes the membrane potential to reach
steady state well below the action potential threshold
and no additional action potentials occurred during the
stimulus (compare Fig. 8A and B). The neuron dis-
played greater spontaneous activity than did the model
in the pure tone simulations, however, for these param-
eter values the model displayed spontaneous activity
for the click train fits as well (shown in Fig. 6). In other
cases model neurons predicted sustained responses to
tones (Fig. 6C), and several of the selective biologi-
cal neurons showed similar responses (Fig. 6D). In this
case, the neuron also displays post-stimulus activity,
which was most probably a neural response to ringing
in the tank. Out of the seven cases tested, six matched
the qualitative response of the biological neuron. The
main difference, illustrated in Fig. 8, is that the model
neurons generated fewer action potentials over all than
the biological neurons did. Perhaps this is not too sur-
prising, because the only difference between a pure
tone and a click train in our model was the interval
between action potentials arriving from the input neu-
rons, M and I. It seems reasonable to assume that there
may be other differences as well that are not accounted
for in this simple model. Nevertheless, the quality of
the model’s predictions regarding pure tone responses
was remarkably good.

Physiological Substrates for Inhibitory Gating
in Pollimyrus

Evidence for the neural machinery required for the in-
hibitory gating mechanism comes from physiological
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Figure 8. Predicted A, C: and observed B, D: responses to pure tone stimulation. Both onset and sustained responses were observed.

and anatomical studies of Pollimyrus. Neurophysiolog-
ical experiments have demonstrated that highly syn-
chronized spike trains are present in the midbrain
(Crawford, 1993, 1997). These spike trains are appear
to be the input to the midbrain, provided by medullary
projection neurons, and are ideally suited to providing
the input required by the model. Additionally, record-
ings from midbrain neurons have provided evidence of
both sound-induced inhibition and inhibitory rebound.
The immunohistochemistry of the auditory midbrain
also indicates that there are neurons containing the neu-
rotransmitter γ -aminobutyric acid (GABA, Mugnaini
and Maler, 1987). Neuroanatomical studies have re-
vealed that a pair of lemniscal nuclei (IRN) form a
feedback loop for the auditory midbrain, and this loop
could provide the delayed inhibitory input needed for
gating (Kozloski and Crawford, 1998b). These obser-
vations support the plausibility of this mechanism in

Pollimyrus. Additional biophysical studies of the audi-
tory neurons will provide important new information
for evaluation of the model.

Discussion

A key question for auditory temporal computation re-
gards the source of neural delays sufficient to yield
analysis on a time scale relevant for the analysis of com-
munication sounds. The nervous system must analyze
temporal events on a time scale of tens to hundreds of
milliseconds in this context, and the axonal conduction
delays that play a crucial role in binaural processing
of microsecond time disparities (Carr, 1993), are not
adequate for neural processing of these longer dura-
tion temporal cues. The delays produced through the
post-inhibitory-rebound mechanisms, however, may
represent a general solution for auditory temporal
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computation in the range of a few to hundreds
of milliseconds (Sullivan, 1982; Margoliash, 1983;
Suga, 1988; Casseday et al., 1994; Buonomano and
Merzenich, 1995; Crawford, 1997; Hooper, 1998).

Our results show that a simple network model, con-
strained by biophysical properties of real neurons, can
predict the responses of interval-selective neurons in
the auditory midbrain of a vertebrate animal. The un-
derlying mechanism gains plausibility for Pollimyrus
from neural circuitry appropriate for the proposed net-
work, existence of the required synchronized input to
the midbrain, evidence for GABA-mediated inhibition,
and inhibitory rebound. The model closely fit the ob-
served interval-selectivity curves for naturalistic click-
train stimuli reported previously (Crawford, 1997). It
also produced output resembling the complex physi-
ological responses of interval selective cells to pure
tones. Thus, this model represents a realistic proposal
for auditory temporal computation in the analysis of
communication sounds, whether the simple sounds of
fish courtship or the complex sounds of human speech.

One important benefit of this theoretical formulation
is that it provides clear predictions for further neuro-
physiological evaluation of the inhibitory gating hy-
pothesis in Pollimyrus. The output of the model de-
pends specifically on the precise timing of the inputs,
and not simply the average rate of input. Thus the model
predicts that irregular click trains would produce little
output even if the average interval of the input were
appropriate. Physiological output should decline as ir-
regularity, or jitter, in the stimulus click trains is in-
creased. Click-train-like stimuli can also be created
from tone complexes added in zero starting phase. Ran-
domizing the starting phases in this kind of stimulus is
expected to introduce jitter to the timing of the input
action potentials and thus reduce physiological output
in a similar fashion. This is an important experiment
because the manipulation does not change the ampli-
tude spectrum of the stimulus. There are also clear pre-
dictions from the model regarding membrane potential
excursions during stimulation (Fig. 2), and these can
be evaluated in future intracellular studies. The kinet-
ics of the currents underlying EPSPs, IPSPs, and PIR
can be measured. The suspected inhibitory input to se-
lective neurons can be blocked pharmacological agents
(Fuzessery and Hall, 1996; Casseday et al., 2000), and
this should eliminate interval-selectivity in Pollimyrus.

Data from other species support the proposed tempo-
ral mechanism as well. Frogs and toads (Anurans) make
amplitude modulated mating calls, many of which are

similar to the grunts of Pollimyrus and other fishes (Fine
et al., 1997; Gerhardt, 1994; Myberg, 1997). Midbrain
auditory neurons in some of these animals are known
to be selective (tuned) to the AM rates used in sound
production (Feng et al., 1990; Alder and Rose, 1998).
These neurons are physiologically similar to the se-
lective neurons in Pollimyrus in that they have similar
narrow ranges of preferred intervals that elicit maxi-
mal spike output. The two types of neurons have best
repetition rates in the 40–100 pulses per second range.
In contrast to Pollimyrus, the selective neurons in frogs
(Rana pipiens) require a minimum number (median
≈8) of consecutive correct intervals before they be-
gin to spike, and are thought to depend upon an inte-
gration process (Alder and Rose, 1998). Thus, these
pulse-integration (PI) neurons appear to reflect both
(1) a physiological mechanism for interval selectivity
and (2) a mechanism for counting the number of times
the temporal criterion has been reached. It is not yet
known which mechanism underlies the interval selec-
tivity of PI neurons, but an inhibitory gating mecha-
nism is a clear possibilty. The inhibitory gating hy-
pothesis is consistent with the finding that application
of GABA antagonists can eliminate interval selectivity
in frog midbrain neurons (Hall, 1994). The selectivity
recorded in PI neurons may be produced by circuits
that provide input to the PI neurons, and the PI neurons
may then integrate a succession of inputs to produce
the observed dependence on stimulus pulse number.
This integration process could explain why the PI re-
sponses lack the synchronization and relatively short
latencies that are characteristic of selective neurons in
Pollimyrus.

It has also been hypothesized that selectivity for
sound duration in mammals could be created through
a mechanism involving a combination of excitatory
and inhibitory inputs to a duration tuned neuron, with
inhibitory rebound gating the throughput of the exci-
tatory input (Casseday et al., 1994; Fig. 1, Casseday
et al., 2000). The transient excitatory input is delayed,
and the inhibitory input is initiated at stimulus onset
and sustained. If the duration of the sound is appro-
priate, inhibitory rebound following sound offset will
coincide with the excitatory input and produce a facili-
tated response. Thus, duration tuning is determined by
the delay of the onset-elicited excitatory input (fixed),
and by the timing of inhibitory rebound, determined by
sound duration and locked to sound offset (variable).
Though similar in some respects to the model we have
developed for interval selectivity, there are important
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differences. Most importantly, the duration mechanism
will not yield selectivity to the intervals of click trains.
Similarly, continuous sounds can overwhelm our inter-
selectivity mechanism with inhibition and no selectiv-
ity for duration will be seen. This mechanism for du-
ration tuning has received experimental support from
whole cell recordings in the midbrain of bats and from
pharmacology (Casseday et al., 1994), but more recent
analysis of this system suggests that the original model
is possibly overly simplistic and that multiple mecha-
nisms may be involved (Casseday et al., 2000).

The models discussed to this point are based on prop-
erties of simple networks. Nevertheless, intrinsic mem-
brane properties of single neurons, and properties of
single synapses, might also contribute to periodicity se-
lectivity. For example, sensitivity to very low frequency
AM (5–10 Hz) in the electrosensory system of fish may
be produced by through a combination of synaptic fa-
cilitation (high rate pass) and synaptic depression (low
rate pass; Fortune and Rose, 2000). Although these
mechanisms could contribute to the selective auditory
neurons described here, they are not consistent with
the short latency synchronized responses seen in Pol-
limyrus nor the influence of GABA blockade reported
in frogs.

Comparison with other Computational Models

Other investigators have also undertaken model-
ing of auditory temporal analysis. Buonomano and
Merzenich (1995) used slow inhibition and paired pulse
facilitation in a model of cortical computation. Their
neural circuits were generated randomly, and parame-
ter values were fixed within neurons of a given type.
An array of circuits was generated, each defined by its
unique time-interval selectivity. However, their circuits
did not produce the temporally structured responses we
observed in our interval-selective auditory neurons, and
they did not fit their model output to any other physio-
logical data.

Hooper (1998) proposed a network model that incor-
porated both inhibition and post-inhibitory rebound.
The model was based on the physiology of the crus-
tacean pyloric motor system. In his neurons, the time it
took for PIR to occur shifted as a function of the tem-
poral properties of the input (e.g. ICI), and this shift-
ing delay required that the output of multiple neurons
be compared to arrive at any single duration. Extrapo-
lating to processing in a hypothetical sensory system,
Hooper suggests that a system of synaptic delays, in

combination with the physiology of individual neu-
rons, could yield a perceptual system for the identi-
fication of specific temporal intervals (comparable to
ICI) and event durations (comparable to click dura-
tion). However, the performance of this model has not
yet been compared with data from temporally-sensitive
sensory neurons. In Pollimyrus, interval selective neu-
rons do not respond to different ICI’s by shifting their
firing time relative to clicks, and duration sensitive neu-
rons have not yet been found. Thus, our model is rel-
atively simple, using biophysical variables within re-
alistic ranges, and captures the observed physiological
responses of temporally-sensitive auditory neurons.

Human psychophysical studies have demonstrated
similarities between time discrimination performance
and motor pattern production (e.g., Ivry and Hazeltine,
1995). Many researchers have taken such evidence to
indicate that discrimination and production of time in-
tervals may share a common timing mechanism, per-
haps in the cerebellum or basal ganglia. However, more
recent studies suggest that perceptual and motor mech-
anisms may be quite independent. It has recently been
demonstrated, for example, that sensorimotor synchro-
nization is sensitive to subliminal timing changes, such
that synchronization responses may not even be under
voluntary control (Repp, 2000–2002). Moreover, sen-
sitivity to temporal intervals has now been described
in the midbrain sensory nuclei of a diversity of verte-
brate species, including fishes, frogs, birds and mam-
mals (Carr, 1993). Thus, in this comparative context, it
seems unlikely that the temporal mechanisms for ver-
tebrate perception are predominantly the domain of the
cerebellum and basal ganglia. The type of mechanism
modeled here could account for temporal discrimina-
tions, as required for the perception of prosody in lan-
guage and rhythm in music, whether carried out in the
midbrain (inferior colliculus) or in other brain regions.
Thus, this study adds to a growing body of evidence
that the perception and production of timing may arise
from different neural systems.

Conclusion

Understanding how the nervous system processes tem-
poral information is of broad relevance in understand-
ing human and animal behavior. In auditory percep-
tion, extraction of the temporal features of acoustic
signals is of particular importance. The dynamic model
presented here, constrained by physiologically real-
istic parameters, yielded output that closely matched
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observed physiological responses to temporal patterns
in naturalistic sounds. The correspondence was close
in the number of action potentials elicited, in the distri-
bution of action potential times, and in action potential
synchronization. The biophysical parameters we var-
ied to reproduce the observed physiology could vary
within the interval-selective circuits in the CNS. This
and other predictions will be evaluated in future empir-
ical work.
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