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7.1  Introduction

Music is a high-level cognitive capacity, similar in many respects to language (Patel 
2007). Like language, music is universal among humans, and musical systems vary 
among cultures and depend upon learning. But unlike language, music rarely makes 
reference to the external world. It consists of independent, that is, self-contained, 
patterns of sound, certain aspects of which are found universally among musical 
cultures. These two aspects – independence and universality – suggest that general 
principles of neural dynamics might underlie music perception and musical behavior. 
Such principles could provide a set of innate constraints that shape human musical 
behavior and enable children to acquire musical knowledge. This chapter outlines 
just such a set of principles, explaining key aspects of musical experience directly 
in terms of nervous system dynamics. At the outset, it may not be obvious that this 
is possible, but by the end of the chapter it should become clear that a great deal of 
evidence already supports this view. This chapter examines the evidence that links 
music perception and behavior to nervous system dynamics and attempts to tie 
together existing strands of research within a unified theoretical framework.

The basic idea has three parts. The first is that certain kinds of musical structures 
tap into fundamental modes of brain dynamics at precisely the right time scales to 
cause the nervous system to resonate to the musical patterns. Exposure to musical 
structures causes the formation of spatiotemporal patterns of activity on multiple 
temporal and spatial scales within the nervous system. The brain does not “solve” 
problems of missing fundamentals, it does not “compute” keys of melodic 
sequences, and it does not “infer” meters of rhythmic input. Rather, it resonates to 
music. The second part is that certain aspects of this process can be described with 
concepts that are already well-developed in neurodynamics, including oscillation of 
neural populations, rhythmic bursting, and neural synchrony. Dynamical analysis 
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enables the description of the time-varying behavior of neural populations at the 
level of macroscopic variables. This approach also provides a means for moving 
between physiological and psychological levels of description, allowing a rather 
direct link between universal principles of neurodynamics and universal elements 
of music. The third and final part is that dynamic pattern formation corresponds 
directly to our experience of music. In other words, perceptions of pitch and timbre, 
feelings of stability and attraction, and experiences of pulse and meter arise as 
spatiotemporal patterns of nervous system activity. Section 7.2 introduces some of 
the relevant concepts from neurodynamics. The subsequent three sections consider, 
respectively, three essential and universal elements of music.

7.2  An Introduction to the Neurodynamics of Music

7.2.1  Dynamical Systems in Neuroscience and Psychology

Over the past several years, enormous progress has been made toward detailed 
understanding of nervous system dynamics, and mathematical models are now 
available that capture this behavior with considerable precision. Models of single 
neurons at the level of ion channels have now been available for more than 
50 years (Hodgkin and Huxley 1952), and more recently the dynamical analysis 
of single-neuron models has explained and categorized the various kinds of behav-
iors observed in single neurons (Hoppensteadt and Izhikevich 1997; Izhikevich 
2007). Starting in the 1960s and 1970s, analyses of small networks of neurons 
began to clarify the behavior of local neural populations (Wilson and Cowan 1973; 
Kuramoto 1975; e.g., Amari 1977). For example, Fig. 7.1a shows the connections 
between individual members of local excitatory and inhibitory subpopulations that 
are sufficient to sustain oscillation. Dynamical systems analyses have shown how 
such connectivity leads to the emergence of various types of dynamic behaviors 
from such a simple system; these include spiking, oscillation, bursting, and even 
more complex patterns as shown respectively in Fig. 7.1b (e.g., Crawford 1994; 
Strogatz 2000; Stefanescu and Jirsa 2008). Recently, with the aid of massive com-
puting power, large-scale simulations have begun to investigate global interactions 
among local neural populations. In one large-scale simulation of thalamocortical 
dynamics based on models of various individual neuron types, realistic connectivity 
among local populations (derived from diffusion tensor imaging, see Fig. 7.1c) 
led to spontaneous emergence of global spatiotemporal patterns, including waves 
and rhythms, and functional connectivity on different scales (Izhikevich and 
Edelman 2008).

Because most cognitive functions are subserved by interactions among brain 
 networks distributed over various subcortical and cortical areas, the studies 
described above have the potential to elucidate the neurodynamic underpinnings of 
cognition. It has even been argued that certain features of the complex dynamics 
observed in neural systems correlate well with key aspects of conscious experience 
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(e.g., Seth et al. 2006). Nevertheless, what we know about brain dynamics often 
seems to be disconnected from the observations we make and theories that we test 
at the level of human behavior (e.g., Barrett 2009). For example, linguistic theories 
of prosody, syntax, and semantics are not easily conceived in terms of the neurody-
namics of synapses, neurons, and circuits (Poeppel and Embick 2005). Empirically, 
individual neurophysiological events are often observed to correlate with certain 
predictions about cognitive function (e.g., Kutas and Hillyard 1980; Tallon-Baudry 
and Bertrand 1999). However, behavior-level theories are generally not described 
at the level of neurodynamics (with some exceptions, e.g., Kelso 1995; Large and 
Jones 1999); rather, attempts are made to explain how brain dynamics might imple-
ment abstract computational mechanisms required by cognitive theories (see, e.g., 
Prince and Smolensky 1997; Jackendoff 2003).

Recent empirical and theoretical results suggest that, unlike linguistic commu-
nication, musical behavior may not require postulation of abstract computational 
mechanisms, but may be explainable directly in terms of neurodynamics. To facili-
tate understanding of this approach, this section introduces a few of the basic 
concepts of neurodynamics. The first is the notion of a local population of excit-
atory and inhibitory neurons, as illustrated in Fig. 7.1a. Such populations can give 
rise to several behaviors, illustrated in Fig. 7.1b, the simplest and most well-
understood of which are oscillation, bursting and resonance. Because each of these 
behaviors has psychological significance, the remainder of this section describes 
oscillation and resonance in some detail, while bursting is visited toward the end 
of the chapter.
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Fig. 7.1 (a) Neural oscillation can arise from interactions between excitatory and inhibitory neural 
subpopulations, shown visualized as one neuron representing each subpopulation. (Adapted from 
Hoppensteadt and Izhikevich, 1996a, with permission) (b) Time series illustrating different dynam-
ical regimes for a single neuron within a local excitatory–inhibitory population of the type illus-
trated in A. Behaviors include spiking, oscillation, rhythmic bursting, and bursting intermixed with 
spiking. (From Stefanescu and Jirsa 2008, with permission). (c) Rendering of connections among 
local neural populations, obtained by means of diffusion tensor imaging data, as used in one large-
scale dynamic thalamocortical simulation (From Izhikevich and Edelman 2008, with permission)
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7.2.2  Dynamical Systems and Canonical Models

Because there are many different mathematical models that can be used to describe 
neural behavior, the principal concern is to choose a level of mathematical abstrac-
tion that is appropriate for the type of data that are available and the type of predic-
tions that are desired. At the physiological level, individual neuron dynamics can 
be modeled in detail by Hodgkin–Huxley equations (Hodgkin and Huxley 1952), 
and more specialized models of neural oscillation are also available (FitzHugh 
1961; Nagumo et al. 1962; Wilson and Cowan 1973; Hindmarsh and Rose 1984). 
It is important to keep in mind that actual neurons and neural networks are real 
dynamical systems. At any given time, a dynamical system has a state that can be 
modeled as a point in an appropriate state space. A dynamical model is a mathe-
matical formalization – often a differential equation – that describes the time evolu-
tion of the point’s position in state space. Stability is a fundamental property of a 
dynamical system, which means that the qualitative behavior of its time evolution 
is not affected by small perturbations of the trajectory. Figure 7.1b shows four types 
of stable trajectories in excitatory–inhibitory neural networks. Section 7.2.3 
 discusses two important stable states: resting states (equilibria) and periodic trajec-
tories (limit cycles). An attractor is a stable state to which a dynamical system 
evolves after a sufficiently long time. Thus, points that are close enough to an 
attractor return to the attractor even if temporarily disturbed, for example, by an 
external stimulus.

Returning to neurons and neural networks, resting states correspond to stable 
equilibria, and tonic spiking states correspond to limit cycle attractors (Izhikevich 
2007). Analysis of the transition between states in dynamical models is called 
bifurcation analysis (Wiggins 1990). Bifurcation analysis is facilitated by the trans-
formation of a complex dynamic model to a generic form, called a normal form. 
Interestingly, this analysis transforms virtually any model of neural oscillation into 
the same normal form, under certain assumptions that are generally reasonable for 
neural systems. This analysis reveals that neural oscillations share a set of universal 
properties, independent of many details (Wiggins 1990; Hoppensteadt and 
Izhikevich 1997). A canonical model is the simplest (in analytical terms) of a class 
of equivalent dynamical models, and can be derived using normal form theory. The 
canonical model we introduce in Eq. (7.3) was derived, using normal form theory, 
from a model of the interaction between excitatory and inhibitory neural popula-
tions (Wilson and Cowan 1973; Large et al. 2010). However, it is generic, so it 
could also be derived from other models of nonlinear oscillation (including outer 
hair cell models; see Julicher 2001). The canonical model uncovers universal prop-
erties, making predictions that hold under a rather general set of assumptions 
(Hoppensteadt and Izhikevich 1997). This makes the canonical model especially 
attractive from the point of view of modeling human perception and behavior. Some 
relevant generic properties of neural oscillation are described in Sect. 7.2.4.

Section 7.2.3 describes how the nervous system can resonate to sound, at various 
frequencies and on multiple timescales. The conceptual model is a network of 
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 oscillators, spanning a range of natural frequencies, stimulated with sound (Large 
et al. 2010). The basic idea is similar to signal processing by a bank of linear filters, 
but with the important difference that the processing units are nonlinear, rather than 
linear resonators. Such networks can be arranged into processing layers, as illus-
trated in Fig. 7.2. In what follows, this idea is applied to explain nonlinear reso-
nance in the cochlea, phase-locked responses of auditory neurons, and entrainment 
of rhythmic responses in distributed cortical and subcortical areas.

7.2.3  Networks of Neural Oscillators Resonate to Sound

One way to understand nonlinear resonance is to first consider linear resonance. 
A common signal processing operation is frequency decomposition of a complex 
input signal, for example, by a Fourier transform. Often this operation is accomplished 

Fig. 7.2 Illustration of a layered neural architecture for processing acoustic stimuli. Each network 
layer consists of neural oscillators, arranged along a frequency gradient, from lowest to highest 
frequency. For pitch and melody, the first layer models cochlea, where connectivity between 
neighboring frequencies is shown. A second layer (e.g., dorsal cochlear nucleus) receives afferent 
stimulation from the first layer and also provides efferent feedback. Additional layers are possible, 
modeling neurons that phase lock action potentials to sound in higher auditory areas. Phase-
locking to higher frequencies deteriorates as the auditory system is ascended, illustrated here as a 
lack of oscillators corresponding to higher frequencies in the second layer. Multilayer oscillator 
networks, operating at slower time scales, also serve as models for rhythm perception (see, e.g., 
Large 2000), and multilayer models could capture interactions between auditory and motor areas. 
Within the central nervous system connections between oscillators with different natural frequen-
cies can be learned

frequency
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via a bank of linear bandpass filters processing an input signal, x(t). For example, 
a widely used model of the cochlea is a gammatone filter bank (Patterson et al. 
1992), which – for comparison with our model – can be written as a differential 
equation:

 ( ) ( ).z z i x ta w= + +  (7.1)

where the overdot denotes differentiation with respect to time (e.g., dz/dt), z is a 
complex-valued state variable, w is radian frequency (w = 2pf, f in Hz), and a < 0 
is a linear damping parameter. The term x(t) denotes linear forcing by a time-
varying external signal. Because z is a complex number at every time, t, it can be 
rewritten in polar coordinates revealing system behavior in terms of amplitude, r, 
and phase, φ. This transformation is not reproduced here, but amplitude and phase 
of oscillations are discussed in Sect. 7.2.4. Resonance in a linear system means that 
the system oscillates at the frequency of stimulation, with amplitude and phase 
determined by system parameters. As stimulus frequency, w

0
, approaches the oscil-

lator frequency, w, oscillator amplitude, r, increases, providing band-pass filtering 
behavior.

Recently, nonlinear models of the cochlea have been proposed to simulate the 
nonlinear responses of outer hair cells. It is important to note that outer hair cells 
are thought to be responsible for the cochlea’s extreme sensitivity to soft sounds, 
excellent frequency selectivity, and amplitude compression (e.g., Eguìluz et al. 
2000). Models of nonlinear resonance that explain these properties have been based 
on the Hopf normal form for nonlinear oscillation, and are generic. Normal form 
(truncated) models have the form

 = + + + +

2( | | ) ( ) . . .z z i z x t h o ta w b  (7.2)

Note the surface similarities between this form and the linear resonator of Eq. (7.1). 
Again w is radian frequency, and a is still a linear damping parameter. However, in 
this nonlinear formulation, a becomes a bifurcation parameter that can assume both 
positive and negative values, as well as a = 0. The value a = 0 is termed a bifurca-
tion point and is discussed further in Sect. 7.2.4.1. b < 0 is a nonlinear damping 
parameter, which prevents amplitude from blowing up when a > 0. Again, x(t) 
denotes linear forcing by an external signal. The term h.o.t. denotes higher-order 
terms of the nonlinear expansion that are truncated (i.e., ignored) in normal form 
models. Like linear resonators, nonlinear oscillators come to resonate with the fre-
quency of an auditory stimulus; consequently, they offer a sort of filtering behavior 
in that they respond maximally to stimuli near their own frequency. However, there 
are important differences in that nonlinear models address behaviors that linear 
ones do not, such as extreme sensitivity to weak signals, amplitude compression 
and high frequency selectivity; these are discussed in detail in the Sect. 7.2.4. The 
compressive gammachirp filterbank exhibits similar nonlinear behaviors, described 
within a signal processing framework (Irino and Patterson 2006; see also see 
Patterson et al., Chap. 2).
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A canonical model was recently derived from a model of neural oscillation in 
excitatory and inhibitory neural populations (Wilson and Cowan 1973; Large et al. 
2010). The canonical model (Eq. [7.3]) is related to the normal form (Eq. [7.2]; see 
e.g., Hoppensteadt and Izhikevich 1997), but it has properties beyond those of Hopf 
normal form models because the underlying, more realistic oscillator model is fully 
expanded, rather than truncated. The complete expansion of higher-order terms 
produces a model of the form
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There are again surface similarities with the previous models. The parameters, w, 
a, and b

1
 correspond to the parameters of the truncated model. b

2
 is an additional 

amplitude compression parameter, and c represents strength of coupling to the 
external stimulus. Two frequency detuning parameters, d

1
 and d

2
, are new in this 

formulation, and make oscillator frequency dependent on amplitude (see Fig.7.4c). 
The parameter ε controls the amount of nonlinearity in the system. Most impor-
tantly, coupling to a stimulus is nonlinear (not discussed in further detail here, but 
see Large et al. 2010) and has a passive part, ( , ( ))P x te  and an active part, ( , )A ze , 
producing nonlinear resonances that are discussed in Sect. 7.2.4.4. Helmholtz’s 
(1863; see Sect. 7.3) difference tone, proposed to explain the pitch of the missing 
fundamental, was a passive nonlinearity. The three-frequency resonance of 
Cartwright et al. (1999a; see Sect. 7.3), proposed to explain residue pitch shift 
(Schouten et al. 1962), arises through the interaction between passive and active 
nonlinearities in this system. The canonical model given by Eq. (7.3) is more gen-
eral than the Hopf normal form and encompasses a wide variety of behaviors that 
are not observed in linear resonators, some of which are discussed next.

7.2.4  Some Universal Properties of Nonlinear Oscillation

7.2.4.1  Andronov–Hopf Bifurcation

In the absence of stimulation, a nonlinear oscillator can display two qualitatively 
different stable states, both of which depend upon the specific value of the bifurca-
tion parameter, a. Figure 7.3a illustrates the transition between a stable equilibrium 
and a stable limit cycle, called the Andronov–Hopf bifurcation. When a < 0 the 
system behaves as a damped oscillator, but when a > 0 (negative damping)  
the system generates a spontaneous oscillation. a = 0 is the bifurcation point – also 
referred to as the critical value of the parameter – the value at which behavior 
changes from damped to spontaneous oscillation or vice versa. Other kinds of 
bifurcations that also lead to spontaneous oscillation can be found in this canonical 
model (see Guckenheimer and Kuznetsov 2007). Models of neural oscillation often 
assume spontaneous activity, i.e., a > 0. Models of cochlear outer hair cells assume 
critical oscillation, i.e., a = 0.
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7.2.4.2  Entrainment

When the system oscillates spontaneously (a > 0) and a stimulus is present, the 
oscillation will phase-lock, or entrain, to the stimulus. Figure 7.3b is a bifurcation 
diagram showing some phase-locked regions for an active oscillator network. 
Phase-locked states (Fig. 7.3b), are found at higher-order resonances (e.g., integer 
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Fig. 7.3 (a) Andronov–Hopf bifurcation. The bifurcation diagram shows the two dimensions of 
the state space (the real and imaginary parts of z) and the value of the bifurcation parameter, a. 
When a < 0 the oscillator displays damped oscillation. It responds passively to stimulus, then 
comes to rest (denoted by the inward spiral) at its stable fixed point. a = 0 is refered to as the 
bifurcation point. At a = 0 the system is poised exactly at the boundary between damped and 
spontaneous oscillation, a parameter regime called critical oscillation. Dynamical cochlear models 
assume critical oscillations of outer hair cells. When the bifurcation parameter becomes positive, 
the fixed point (rest) loses stability and limit cycle oscillation (denoted by the outward spiral) 
becomes the stable state. The system does not require a stimulus to sustain an active oscillation, 
but may phase lock to a stimulus if one is present. (b) An “Arnold tongues” bifurcation diagram 
showing some phase-locked regions for an active oscillator network. A denotes the stimulus 
 frequency, and f:f

0
 denotes the ratio of oscillator frequency to stimulus frequency, respectively. 

Nonlinear oscillators can respond to sinusoidal stimuli at near-integer ratio related frequencies, 
such as 1:2, 1:1, 3:2, and 3:1 (see also Fig. 7.4b and c). For active oscillation, there are well-
defined boundaries between phase-locked (shaded areas) and non–phase-locked states
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ratios, discussed in Sect. 7.2.4.4) and are stable. On the horizontal axis, f:f
0
 

denotes the ratio of oscillator frequency to stimulus frequency, and A denotes the 
stimulus amplitude. The diagram shows regions of attraction, where an oscillator 
will adopt an instantaneous frequency that is different from its natural frequency. 
These oscillations are attracted to integer ratios of the stimulus frequency, such 
as 1:2, 1:1, 3:2, and 3:1 (see also Fig. 7.4b and c). For active oscillation, well-
defined boundaries are found between phase-locked (shaded areas) and non–
phase-locked states.

7.2.4.3  Nonlinear Amplitude Responses

Figure 7.4a illustrates the response of three different resonator models to sinusoi-
dal stimulation, presented at their own natural frequencies. The curves show the 
amplitude responses for a linear filter (Eq. [7.1]), and two versions of a critical 
(i.e., a = 0) nonlinear resonator, namely the Hopf normal form (Eq. [7.2]) and the 
fully expanded canonical model (Eq. 7.3). Linear filters have linear amplitude 
response. By contrast, both the Hopf normal form (truncated) model and the fully 
expanded canonical model exhibit extreme sensitivity to weak signals, one of the 
characteristic properties thought to explain nonlinear cochlear responses (e.g., 
Eguìluz et al. 2000),  discussed in Sect. 7.3. While both also exhibit amplitude 
compression, amplitude is fully compressive in the canonical model, but not in the 
Hopf normal form.

7.2.4.4  Higher-Order Resonance

Figure 7.4b shows the response of the three different resonator networks to a 
 complex tone comprising two frequency components (f

1
, f

2
). Resonances are shown 

for a linear filter bank (Eq. [7.1]), and two versions of a critical oscillator array  
(i.e., a = 0 for all oscillators), namely the Hopf normal form (Eq. [7.2]) and canoni-
cal model (Eq. [7.3]). Higher-order resonances are found only in the canonical 
network, due to the nonlinear coupling. Higher-order resonance means that a 
 nonlinear oscillator network responds to a pure tone at the frequency f, with activity 
not only at f but also at harmonics (2f, 3f, ...), subharmonics (f/2, f/3, ...) and integer 
ratios (2f/3, 3f/4, ...) of f. Further, if a complex tone is presented that contains 
 multiple frequencies, a nonlinear network will respond at combination frequencies 
(f

2
 - f

1
, 2f

1
 - f

2
, ...) as well. These responses follow orderly relationships and can be 

predicted given stimulus amplitudes, frequencies, and phases.
This feature of nonlinear resonance has important implications for understanding 

the behavior of such systems. A nonlinear oscillator network does not merely trans-
duce signals; it actually adds frequency information, which may account for pattern 
recognition and pattern completion, among other things. The cochlea is known to 
produce audible higher-order resonances, including difference tones and harmonics 
(e.g., Robles et al. 1997), as produced by the canonical model. Neural pattern 
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Fig. 7.4 Amplitude responses predicted by different resonance models. (a) A linear filter bank 
model (dashed line; Eq. [7.1]) vs. a critical Hopf normal form model (gray solid line; Eq. [7.2]) vs. 
a critical canonical model (solid black line; Eq. [7.3]) responding to stimuli at their own  natural 
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completion based on nonlinear resonance may explain the perception of pitch in 
missing fundamental stimuli (Cartwright et al. 1999a), the perception of tonal rela-
tionships (e.g., Large and Tretakis 2005; Shapira Lots and Stone 2008), and the 
perception of pulse and meter in rhythmic patterns (Sect. 7.5; for a review, see 
McAuley, Chap. 6).

7.2.4.5  Frequency Selectivity and Detuning

Figure 7.4c presents the results of three simulations of an array of critical (a = 0) 
nonlinear oscillators, based on Eq. (7.3). The frequencies of the oscillators in the 
array vary from 250 to 4,000 Hz, along a logarithmic frequency gradient, and the 
stimulus is a sinusoid with a frequency of 1,000 Hz. Each simulation shows the result 
for a different stimulus amplitude. These simulations illustrate two important prop-
erties of nonlinear resonance. First, the response at low stimulus amplitude levels 
reveals that high-frequency selectivity is achieved. As stimulus amplitude increases, 
frequency selectivity deteriorates due to nonlinear compression (b1, b2 < 0). Second, 
due to frequency detuning (d1, d2 ¹ 0) the peaks in the resonance curve begin to 
bend as oscillator amplitude (r) increases. Both types of response agree with mea-
surements in living intact cochleae (e.g., Ruggero 1992; see Fig. 7.5a). Also, as the 
stimulus amplitude increases, higher-order resonances appear at harmonics, subhar-
monics, and integer ratios.

7.2.4.6  Connectivity and Learning

Connections between oscillators can be modified, for example, via Hebbian learning 
(Hoppensteadt and Izhikevich 1996b), providing a mechanism for synaptic plasticity 
wherein the repeated and persistent coactivation of a presynaptic cell and a postsynap-
tic cell lead to an increase in synaptic efficacy between them. The number of possible 
synapses between excitatory and inhibitory subpopulations implies that a connection 
between two oscillators has both a strength and a natural phase (Hoppensteadt and 
Izhikevich 1996a). Both connection strength and phase can be learned by the Hebbian 
mechanism if a near-resonant relationship exists between their frequencies 

Fig. 7.4 (continued) frequency. Amplitude response is linear for the linear filter, partially staurates 
for the normal form, and fully saturates for the canonical model. (b) Three resonator networks 
(linear, Hopf, and canonical) responding a two-frequency stimulus (f

1
 and f

2
). Oscillator amplitude 

is shown in  logarithmic units as a function of resonator frqeuency. The canonical network produces 
harmonics and combination tones of the stimulus frequencies unlike the linear filter or the normal 
form model. (c) A canonical network (Eq. [7.3]) stimulated with a sinusoid at 1,000 Hz, for 
three  different stimulus amplitudes (different curves). As stimulus amplitude increases, frequency 
 selectivity deteriorates, frequency detuning is observed, and higher-order resonances appear
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(Hoppensteadt and Izhikevich 1996b). The Hebbian learning mechanism can learn 
connections between oscillators of different frequencies (Large in press).

7.2.5  Summary

Neural resonance can arise from the interaction between excitatory and inhibitory 
subpopulations. Canonical models of neural oscillation capture universal properties 
that are independent of physiological details. The same generic properties are also 
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Fig. 7.5 (a) Laser velocimetric data from a living chinchilla’s cochlea displaying the root-mean-
square velocity of one point on the basilar membrane as a function of stimulus frequency. Each 
curve represents a different level of stimulation (dB SPL). Note the dramatic increase in band-
width and the detuning as intensity increases. (From Ruggero 1992, with permission) (b) Hopf 
resonance. The amplitude response, r, to different levels of forcing is obtained from Eq. (7.2); the 
amplitude of forcing increases in increments of 10 dB for successive curves from bottom to top. 
At resonance the response increases as the one-third power of the forcing, whereas away from the 
resonance the response is linear in the forcing (From Eguìluz et al. 2000, with permission)
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found in other kinds of nonlinear oscillations, such as mechanical oscillations at the 
cellular scale (Choe et al. 1998; Eguìluz et al. 2000; Julicher 2001). Canonical 
models are also available for burst oscillation, and these share some of the basic 
properties of limit cycle oscillation described in the preceding text (Izhikevich 
2007). Although a detailed discussion of mathematical models of burst oscillation 
is beyond the scope of this chapter, the potential role of burst oscillation in rhythm 
perception is considered toward the end of the chapter. Gradient frequency net-
works of nonlinear oscillators can resonate to sound. Nonlinear resonators share 
some filtering properties with linear resonators, but also exhibit many properties 
that are not found in linear resonators. These include spontaneous oscillation, non-
linear amplitude responses, and higher-order resonance. Higher-order resonance is 
of critical importance; it implies a sort of pattern-formation behavior that is appro-
priate for describing the perception of structured patterns in musical sounds. For 
neural oscillation, there is also a canonical version of the Hebbian learning rule, 
enabling the development of connectivity among neural oscillators. The following 
sections will consider cochlear resonance, central auditory nonlinearities and 
entrainment of cortical rhythms from a dynamical systems point of view. The 
dynamic approach will lead to an understanding of the relationship between such 
phenomena and experiences of pitch, tonality, and rhythm in music perception.

7.3  Cochlear Resonance, Neural Resonance,  
and Pitch Perception

The first attempts to explain the physical basis of music perception concerned pitch. 
Shortly after Fourier methods were developed, Ohm (1843) proposed that pitch was 
a consequence of the auditory system’s ability to perform Fourier analysis on 
acoustical signals. In Ohm’s view, the pitch of a complex tone was a Fourier com-
ponent of the sound. Helmholtz (1863) agreed that the ear acts as a rough Fourier 
analyzer and proposed the hypothesis that the analysis was performed by the basilar 
membrane. He described the cochlea as a time-frequency analysis mechanism that 
decomposes sounds into sinusoidal components for subsequent analysis by the 
central auditory nervous system. In the 1960s von Békésy (1960) demonstrated 
experimentally that the hypothesis of Helmholtz was essentially correct, that is, the 
basilar membrane carries out a frequency analysis of acoustic stimuli. Von Békésy’s 
observations – using measurements on human cadavers – suggested that cochlear 
responses are linear over the range of physiologically relevant sound intensities.

Since then, however, a number of problems have arisen with the notion that the 
cochlea performs a passive, linear analysis. The weakest audible sounds impart 
energy per cycle no greater than that of thermal noise (Bailek 1987), and the system 
operates over a range of intensities that span at least 14 orders of magnitude. Gold 
(1948) recognized that these properties were incompatible with a passive, linear 
cochlea; rather, additional energy must be added into the system by active feedback. 
He also noted that if an active resonator underwent a Hopf bifurcation (see Fig. 7.4a), 
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it would oscillate spontaneously, and the ear would emit sound. Recently, the discov-
ery of spontaneous otoacoustic emissions (Kemp 1979; Murphy et al. 1996) con-
firmed Gold’s prediction. Moreover, laser-interferometric velocimetry performed on 
living, intact cochleae has revealed exquisitely sharp mechanical frequency tuning, 
which deteriorates with increasing stimulus amplitude (Ruggero 1992; Ruggero 
et al. 1997), as illustrated by different curves in Fig. 7.5a. These and related discov-
eries have led to the proposal that active amplification, in the form of Andronov–
Hopf type nonlinearities, is the basic mechanism of the mammalian cochlear 
response (Choe et al. 1998; Camalet et al. 1999). The sharp mechanical frequency 
tuning, exquisite sensitivity, and operating range of the cochlea are now explained 
as self-tuned critical oscillations of hair cells (Eguìluz et al. 2000; Fig. 7.5b). It 
appears that the cochlea performs a type of active, nonlinear time-frequency trans-
formation, using a network of locally coupled outer hair cell  oscillators, each tuned 
to a distinct intrinsic frequency (eigenfrequency), and driven by an external stimulus 
(Duke and Julicher 2003; Kern and Stoop 2003; see also Irino and Patterson 2006).

Regarding perception, Seebeck (1841) demonstrated that if most of the energy 
at the fundamental frequency is removed from the complex spectrum of a periodic 
sound, the perceived pitch remains unchanged, matching the pitch of a sinusoid 
with the frequency of the missing fundamental.1 Seebeck (1843) proposed a 
 periodicity detection theory for pitch perception in complex sounds. However, 
Helmholtz (1863) embraced Ohm’s approach, proposing that a physical compo-
nent at the missing fundamental frequency, a “difference combination tone,” could 
be generated by passive nonlinearities of the ear (similar to that in Eq. [7.3]). But 
Schouten et al.’s (1962) famous pitch-shift experiments demonstrated that the 
 missing fundamental is not a difference tone. Schouten’s theory of pitch was based 
on the periodicity properties of the nonresolved “residue” components of the 
stimulus. Eventually, because peripheral theories failed to explain psychophysical 
experiments and because dichotically presented stimuli also elicit pitch perception 
(e.g., Houtsma and Goldstein 1972), central processor theories for pitch percep-
tion arose (e.g., Goldstein 1973; Terhardt 1974). Complex pitch perception is still 
debated by theorists. It is determined neither solely by the spectral content of 
sound nor solely by its temporal structure (Plack and Oxenham 2005).

Recently, key theoretical advances have been made in understanding multifre-
quency resonance behaviors of nonlinear oscillators (Cartwright et al. 1999b), and 
this may have relevance for auditory perception. In experiments and numerical simu-
lations, Cartwright and colleagues worked out the organization of higher-order reso-
nances in representative nonlinear oscillators, and argued convincingly that such 
organization is universal across a large class of systems. They further showed that 
nonlinear resonance explains the “pitch shift of the residue,” one of the  important 
unexplained cases of pitch perception (Schouten et al. 1962; Cartwright et al. 
1999a). If pitch depends on a difference tone (a passive nonlinearity), then when the 

1 Schouten (1938) showed that removing the fundamental component completely from the acoustic 
stimulus did not alter the pitch, and Licklider (1956) showed that the same pitch was heard even when 
the frequency region that would normally be occupied by the fundamental was masked by noise.
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components of a missing fundamental harmonic complex are all shifted by the same 
amount the pitch should not change, because their difference remains the same. But 
Schouten et al. showed that perceived pitch does indeed shift, as illustrated in 
Fig. 7.6 for harmonics of 200 Hz. Figure 7.6 also shows that physical frequencies 
produced by generic nonlinear oscillators, acted upon by two independent periodic 
excitations, can reproduce the experimental data from Schouten’s famous pitch-shift 
experiments with impressive precision. This provides strong evidence that nonlinear 
resonance is a viable neural mechanism for pitch perception. In Eq. (7.3), the pitch-
shift resonance of Cartwright and colleagues arises through the interaction between 
passive and active nonlinearities and is nontrivial. Thus, higher-order resonance of 
neural oscillation could explain important aspects of pitch perception.

Nonlinear oscillations can arise through the interaction of excitatory and inhibitory 
neural populations, as illustrated in Fig. 7.1a and b, and there is a growing body of 
evidence consistent with nonlinear oscillation in the central auditory system. In mam-
mals, action potentials phase-lock to both fine time structure and temporal envelope 
modulations at many different levels in the central auditory system, including cochlear 
nucleus, superior olive, inferior colliculus (IC), thalamus, and A1 (Langner 1992; Joris 
et al. 2004), and recent evidence points to a key role for synaptic inhibition in main-
taining central temporal representations. Hyperpolarizing inhibition is phase-locked to 
the auditory stimulus and has been shown to adjust the temporal sensitivity of 
 coincidence detector neurons (Grothe 2003), while stable pitch representation in the 

Fig. 7.6 Plot of the predicted (solid lines) pitch shift effect against the data of Schouten et al. 
(1962). Stimuli were tone complexes created from three successive harmonics of 200 Hz. 
Different lines correspond to different stimuli, and k is the harmonic number of the lowest fre-
quency in the complex (e.g., k = 6 refers to harmonics 6, 7, and 8). Center frequency of the com-
plex is plotted on the horizontal axis, and reported pitch on the vertical axis. Nonlinear resonance 
explains these data with considerable precision (From Cartwright et al., 1999a, with permission)
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IC may be the result of a synchronized inhibition originating from the ventral nucleus 
of the lateral lemniscus (Langner 2007). Such  evidence suggests that nonlinear oscil-
lation may be a good model for phase-locked central auditory responses.

Recent evidence also supports higher order resonance in neural activity. 
Multipeaked spectrotemporal receptive field (STRF) curves have been identified 
in cat primary auditory cortex, some with responses to second and third harmonics 
of the fundamental frequency (Sutter and Schreiner 1991). Modulation-rate selec-
tive cells in the auditory midbrain of Pollimyrus, which receive both excitatory and 
inhibitory input, have been successfully modeled as nonlinear oscillators (Large 
and Crawford 2002). Nonlinear STRFs have been identified in cat IC (Escabi and 
Schreiner 2002), and neurons in the IC of the gerbil have been observed to respond 
at harmonic ratios (e.g., 3:2, 2:1, 5:2; cf. Fig. 7.4c) with the temporal envelope of 
the stimulating waveform (Langner 2007). Nonlinear 2f

1
–f

2
 difference tones (see 

Fig. 7.4b) have been identified in brain stem auditory evoked potentials of guinea 
pigs (Chertoff and Hecox 1990), in human frequency-following responses using 
electroencephalography (EEG; Pandya and Krishnan 2004), and in auditory cor-
tex, using steady-state methods in magnetoencephalography (MEG) (Purcell et al. 
2007). These results provide evidence of higher-order resonance in the auditory 
system all the way from the cochlea to the primary auditory cortex.

7.3.1  Summary

The auditory nervous system is highly nonlinear, and observed responses are consistent 
with the generic predictions of nonlinear resonance, possibly arising in excitatory–
inhibitory networks of the auditory nervous system. One potentially important 
functional consequence would be the perception of pitch, which may arise through 
an active nonlinear mechanism that is generic to nonlinear oscillators (i.e., Eq. [7.3]). 
Fourier-based approaches rely on linear systems theory almost exclusively, thus 
they describe human perceptual capabilities only approximately. However, generic 
models of neural oscillation (e.g., Eqs. [7.2] and [7.3]) are available, which are able 
to capture functionally important nonlinearities. As a result, such models may be 
able to capture many human perceptual and cognitive capabilities in a physiologi-
cally realistic way, but without strong dependence on physiological details. This 
observation has important implications not only for pitch perception, but also for 
other aspects of musical experience.

7.4  Neurodynamics of Tonality

The preceding section focused on responses to individual tones. But music is more 
than the perception of isolated tones; it involves the combination of tones into 
larger structures, such as melodies. Musical melodies typically involve discrete 
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tones, organized in archetypal patterns that are characteristic of musical genres, 
styles, and cultures. These patterns may be related to a scale, an ordered collection 
of all the tones used in a given melody, which summarizes the frequency ratios that 
govern the intervals between tones in a melody. One feature the melodies of most 
musical systems share is that they give rise to tonal percepts. Listeners experience 
feelings of stability and attraction among tones in a tonal melody. Stability means 
that one or more tones are perceived as points of repose. One specific tone, called 
the tonic, provides a focus around which the other tones are dynamically organized, 
and there is a hierarchy of relative stability, such that some tones are perceived as 
more stable than others. Less stable tones provide points of dissonance or tension; 
more stable tones provide points of consonance or relaxation. Less stable tones are 
heard relative to more stable ones, such that more stable tones are said to attract the 
less stable tones (e.g., Lerdahl 2001). Some theorists have described tonal attraction 
by analogy to physical forces, such as gravity (Larson 2004); others link it to the 
resolution of musical dissonance (Bharucha 1984). Zuckerkandl (1956) argued that 
these dynamic tonal qualities make “melodies out of successions of tones and 
music out of acoustical phenomena (p. 21).” But what processes in the nervous 
system could give rise to such perceptions in music?

The oldest theory of musical consonance is that perceptions of consonance and 
dissonance are governed by ratios of whole numbers. Pythagoras is thought to have 
first articulated the principle that intervals of small integer ratios (cf. Figs. 7.3b and 
7.4c) are pleasing because they are mathematically pure (Burns 1999). He used this 
principle to explain the musical scale that was in use in the West at the time, and 
Pythagoras and his successors proposed small-integer-ratio systems for tuning 
musical instruments, such as Just Intonation (JI). Modern Western equal tempera-
ment (ET), divides the octave into 12 intervals that are precisely equal on a log 
scale. ET approximates JI, and transposition in ET is perfect, because the frequency 
ratio of each interval is invariant. Apart from octaves, however, the intervals are not 
small integer ratios, they are irrational. The fact that intervals based on irrational 
ratios are approximately as consonant as nearby small integer ratios is generally 
considered prima facie evidence against the theory that musical consonance derives 
from the mathematical purity of small integer ratios.

Helmholtz (1863) hypothesized that the dissonance of a pair of simultaneously 
sounding complex tones was due to the interference of its pure tone components, 
explaining dissonance as a sensation of roughness produced by the beating of sinu-
soids. This phenomenon, called sensory dissonance, is heard when simultaneous 
tones interact within an auditory critical band (Plomp and Levelt 1965), and the 
interaction of pure tone components correctly predicts ratings of consonance for 
pairs of complex tones (Kameoka and Kuriyagawa 1969). However, there are a 
number of problems that arise with Helmholtz theory as a theory of musical conso-
nance (Dowling and Harwood 1986). For one thing, the sensory dissonance pheno-
menon is heard for isolated clusters of simultaneously sounded tones, but not for 
sequentially presented tones (i.e., melodies). Moreover, musical consonance and 
dissonance are intrinsically dynamic: “… a dissonance is that which requires reso-
lution to a consonance” (Dowling and Harwood 1986). Recently, Shapira Lots and 
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Stone (2008) used the theory of coupled neural oscillators to explain why simple 
frequency ratios are important for music perception. They used the width of the 
resonance regions (cf. Fig. 7.3b) for higher order resonances to predict the conso-
nance of the intervals of chromatic scales. Their analysis revealed that this method 
of ordering higher order resonances corresponds to the standard ordering of conso-
nance often listed in Western music theory (Helmholtz 1863), suggesting that 
neural synchrony may be important in music perception. One piece of relevant 
evidence comes from a recent study in which nonlinear responses to harmonic 
musical intervals were measured in the auditory brain stem response. Two musical 
intervals, the major sixth (E3 and G2) and the minor seventh (E3 and F#2), were 
found to give rise to highly nonlinear responses including difference and summa-
tion tones (cf. Fig. 7.4b), revealing nonlinear processing of simultaneously sounded 
musical intervals in the auditory system (Lee et al. 2009).

Tonal perceptions such as stability, attraction, perceptual categorization, and 
learning of tonal relationship may depend on neural resonance as well (Large and 
Tretakis 2005; Large in press). Perceptual categorization and discrimination experi-
ments reveal that musicians show categorical perception of melodic intervals (Burns 
and Campbell 1994), and nonmusicians also perceive pitch categories (Smith et al. 
1994). Resonance regions (Fig. 7.3b) predict perceptual categorization of musical 
intervals, because resonances not only affect oscillators with precise integer ratios; 
they also establish patterns of resonant neighborhoods (Fig. 7.7c). Thus, even if 
resonance center frequencies do not precisely match stimulus  frequencies, as con-
nection strength increases, larger regions of the network resonate, emanating from 
integer ratios, and encompassing nearby ratios (Large and Tretakis 2005).

Simplicity of frequency ratios has been shown to account not only for judgments 
of consonance and dissonance, but also for judgments of similarity and discrimina-
tion of tone patterns across a wide range of tasks and listeners (Schellenberg and 
Trehub 1994). In one study, 6-month-old infants detected changes to sequentially 
presented pairs of pure tones (intervals) only when the tones were related by simple 
frequency ratios (Schellenberg and Trehub 1996). In adults as well, changes from 
patterns with simple frequency ratios to those with more complex ratios were more 
readily detected than were changes from complex ratios to simpler ratios. This 
implies that memories for tone sequences with small integer ratio relationships are 
more stable than memories for complex integer relationships. Large (in press) found 
a similar result in an oscillator network simulation. Tones with small integer ratio 
relationships (1:1, 5:4 and 3:2 – a tonic triad) produced a stable memory in the neural 
oscillator network (cf. Fig. 7.2). Although a leading tone (8:15 ratio with the tonic 
frequency) could be stabilized through external stimulation, when the external stimu-
lus was removed, the leading tone frequency lost stability as those oscillators that had 
responded at the leading tone frequency began to resonate at the tonic frequency. In 
other words, the tonic frequency functioned as an attractor of nearby oscillations. 
Thus, nonlinear resonance predicts both memory stability of small  integer ratios and 
tonal attraction among sequentially presented frequencies (Large in press).

Krumhansl and Kessler (1982) measured the stability of each tone within a musi-
cal key directly, by asking listeners to rate how well individual pitches fit within a 
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tonal context (see Fig. 7.7a, b). Higher goodness-of-fit ratings imply higher stability, 
so, for example, C and G are the most stable in both the C-major and C-minor tonal 
contexts. When applied to Western music, the measured hierarchies are consistent 
with music-theoretic accounts and agree with frequency-of-occurrence statistics for 
tonal songs (Krumhansl 1990). It is possible to apply a dynamic analysis to predict 
tonality rating data. Nonlinear resonance predicts that the relative stability of 
higher order resonances is given by + −( 2)/2k me , where k and m are the numerator 
and denominator, respectively, of the frequency ratio (Hoppensteadt and Izhikevich 
1997). Here e is a parameter that controls coupling nonlinearity (see Eq. [7.3]). One 
could use this fact and assume that tones heard in a tonal context would be stabilized 
in memory (based on the simulation results described above), to create a single-
parameter (e) fit to the stability judgments. Theoretical predictions of stability based 
on this analysis matched perceptual judgments well (Large in press), as shown in 
Fig. 7.7a and b.

The tuning systems of the world’s largest musical cultures, Western, Chinese, 
Indian, and Arab-Persian, are based on small integer ratio relationships (Burns 
1999).2 However, each tuning system is different, and this has led to the notion that 

2 ET in the West is designed to approximate small integer ratio tuning and has been in widespread 
use for less than 150 years.
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frequency relationships do not matter in high-level music cognition; rather, auditory 
transduction of musical notes results in abstract symbols, as in language (see, e.g., 
Patel 2007). If this were true, stability and attraction relationships would also have 
to be learned presumably based solely on the frequency-of-occurrence statistics of 
tonal music (for a current overview, see Krumhansl and Cuddy, Chap. 3). However, 
Hebbian learning of multifrequency relationships can provide a theoretical basis for 
the acquisition of frequency relationships. As the music of one’s culture is heard, 
auditory networks would learn the most stable attractors whose center frequencies 
closely approximate the experienced relationships. Natural resonances predict 
 significant constraints on which frequency relationships can be learned, as illustrated 
in Fig. 7.7c. Hebbian synaptic modification would effectively prune some reso-
nances, while retaining or enhancing others (Large in press). This reasoning suggests 
that frequency relationships are learned depending on the frequency relationships 
employed in the music of a particular style or culture. However, stability and attrac-
tion relationships are not learned per se, but are intrinsic to neural dynamics given 
a particular set of frequency relationships.

7.4.1  Summary

Nonlinear resonance predicts the perceived dynamics of tonal organization and 
important aspects of neurophysiological responses, qualitatively and quantitatively. 
Thus, nonlinear resonance may provide the neural substrate for a substantive musical 
universal, similar to the concept of universal grammar in linguistics (Prince and 
Smolensky 1997). However, in the case of music, perceptual universals are predicted 
by universal properties of nonlinear resonance, properties that provide direct links 
to neurophysiology. Learning would alter connectivity to establish different reso-
nances and different tonal relationships. According to this approach, stability and 
attraction relationships would not be learned on the basis of statistical properties of 
tone sequences; instead, because nonlinear resonance predicts stability and attrac-
tion, and because stability and attraction are correlated with sequence statistics, 
nonlinear resonance predicts tone frequency statistics. Thus, higher-order reso-
nances may create resonant tonal fields in the central nervous system, and musical 
melodies may be perceived in relation to such fields, creating a dynamical context 
within which perception of tone sequences takes place.

7.5  Resonating to Rhythm

Musical structure is found not only in the pitch dimension, but also in the time dimension. 
Jones (1976) originally proposed that neural rhythms entrain to the temporal structure 
of environment stimuli. Entrainment of intrinsic neural dynamics would enable 
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dynamic attending, providing a basis for temporal expectancy and facilitating percep-
tion of events that occur at expected points in time. Musical rhythms are highly tem-
porally structured sequences of acoustic events, and in most musical rhythms people 
perceive periodicity, called pulse or beat, and structured patterns of accentuation 
among pulses, called meter (London 2004). Pulse can be thought of as a frequency, 
and meter as a pattern of frequencies, which can be transcribed as arrangements of dots 
(reflecting beats) aligned with a musical score, as shown in Fig. 7.8a. The fundamental 
pulse periodicity (the rate at which one taps with a rhythm) is notated as a single row 
of beats, and the pattern of strong and weak pulses as additional rows of beats at related 
frequencies (for a more thorough discussion of pulse and meter, see McAuley, 
Chap. 6). Sometimes metrical frequencies are physically present in stimulus rhythms; 
sometimes they are not. For example, in the clave rhythm of Fig. 7.8a, the frequencies 
of the pulse and meter are almost completely absent.

The temporal relationships observed in human musical interactions are among 
the most elaborate observed in nature (for a review, see Large 2008). When humans 
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Fig. 7.8 (a) Pulse and meter of the 3–2 son clave rhythm à la Lerdahl and Jackendoff (1983). 
At 500 ms/quarter note, the pulse frequency would be 2 Hz or 120 bpm. Results of a linear 
(b; Eq. [7.1]) and nonlinear (c; Eq. [7.3]) analysis of the 3–2 son clave rhythm. The linear analysis 
reveals very little energy in this rhythm at the pulse frequency or at other metrical frequencies. 
The nonlinear analysis responds at all metrical frequencies (as well as many others) via higher-
order resonance
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temporally coordinate in musical interactions, we synchronize – or more generally, 
entrain – pulse frequencies. Entrainment is the process whereby two spontane-
ously oscillating systems, which have different frequencies when they function inde-
pendently, assume the same frequency, or integer-ratio related frequencies, when 
they interact. In general, entrainment of neural oscillations predicts multifrequency 
coordination at simple frequency ratios such as 1:1, 1:2, 1:3, 2:3, due to higher-
order resonance (Figs. 7.3b and 7.4c). Such entrainment is found in everyday musical 
interactions and has been observed in behavioral studies involving perception 
(e.g., Vos 1973), attention (e.g., Barnes and Jones 2000), and motor coordination 
(e.g., Parncutt 1994). Moreover, newborns can perceive pulse (Winkler et al. 2009); 
by 7 months infants discriminate rhythms and categorize melodies on the basis of 
meter (Hannon and Johnson 2005); and 9-month-old infants detect changes in the 
context of metric rhythms but not in sequences that induce a metric percept only 
weakly or not at all (Bergeson and Trehub 2006). Toddlers as young as 2.5 years 
are capable of entraining motor rhythms with periodic sequences (Provasi and 
Bobin-Begue 2003; Kirschner and Tomasello 2009), and even some animals can 
entrain motor rhythms to music (Patel et al. 2009; Schachner et al. 2009).

The two complexities of rhythm that are the most troublesome for theoretical 
accounts of pulse and meter are syncopation and temporal fluctuation. Syncopation 
refers to rhythms in which accented events occur on weaker positions in the metrical 
structure while leaving nearby stronger positions empty (Fitch and Rosenfeld 
2007). This is illustrated by the clave rhythm of Fig. 7.8a, in which note events 
occur on only half the beats of the basic pulse and occur often on relatively weak beats. 
Temporal fluctuation refers both to localized temporal nuances and to larger scale 
tempo changes (i.e., rubato) that arise in music performance due to motoric, percep-
tual, and expressive constraints (Palmer 1997; Penel and Drake 1998). Temporal 
fluctuation is correlated with important aspects of musical structure (Sloboda 1983, 
1985; Todd 1985; Palmer 1989), exhibits 1/f (fractal) structure (Rankin et al. 2009), 
and conveys affect and emotion to listeners (Sloboda and Juslin 2001).

Several studies have compared people’s ability to entrain to simply structured 
versus syncopated rhythms (Snyder and Krumhansl 2001; Toiviainen and Snyder 
2003; Patel et al. 2005). Level of syncopation is a good predictor of pulse-finding 
difficulty, and syncopation causes some off-beat taps and some switches between 
on beat and off beat tapping (Snyder and Krumhansl 2001; Patel et al. 2005). Overall, 
however, humans are quite good at entraining to the pulse of even highly syncopated 
rhythms. How is this possible? Figure 7.8b and c illustrates two resonance predic-
tions for a highly syncopated rhythm (Fig. 7.8a), one generated by a linear filter 
bank (Eq. [7.1]) and the other by a critical nonlinear resonator array (Eq. [7.3]). 
The linear filter bank responds at frequencies that are physically present in the time 
series, finding very little energy at 2 Hz (the pulse frequency for this rhythm). There 
are several strong peaks, however, with the strongest at 1.33 Hz, corresponding to 
the time interval between the first and second notes (i.e., 1/0.750 s). By contrast, a 
nonlinear oscillator array finds its strongest peak at 2 Hz, the pulse frequency, due 
to higher-order resonance. Such observations predict that perceived pulse in highly 
syncopated rhythms arises through higher order resonance.
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Most listeners are also good at synchronizing with music that contains expressive 
timing fluctuations (Drake et al. 2000). A number of studies have investigated the 
response of nonlinear oscillators to temporal fluctuation in music (McAuley 1995; 
Toiviainen 1998; Large and Palmer 2002; Cont 2008), generally finding support for 
oscillator predictions. However, one surprising recent finding in this area is that 
people are able to predict, rather than simply react to, expressive temporal fluctua-
tions (Repp 2002; Rankin et al. 2009). It has been hypothesized that listeners 
exploit musical and fractal structure to predict tempo changes in music (Repp 2002; 
Rankin et al. 2009). One important aspect of this ability may be the covert monitoring 
of multiple metrical frequencies during entrainment (Large et al. 2002; Repp 
2008) One nonlinear resonance model captures this phenomenon as coupling 
between nonlinear oscillators as they respond at different metrical frequencies 
(Large and Jones 1999; Large and Palmer 2002; Jones 2008).

Recent functional imaging studies have shown that the perception of rhythmic 
sequences involves multiple, spatially distinct brain regions. Rhythmic information 
is represented across broad cortical and subcortical networks in a manner that is 
dependent upon task and rhythmic complexity (Sakai et al. 1999; Grahn and Brett 
2007; Jantzen et al. 2007; Chen et al. 2008). Metric rhythms are easier to reproduce, 
and elicit higher activity in the basal ganglia and supplementary motor area (Grahn 
and Brett 2007), suggesting that these motor areas play a role in mediating pulse 
and meter perception. Both performance and neural activity are modulated as musi-
cians and nonmusicians tap in synchrony with progressively more syncopated audi-
tory rhythms (Chen et al. 2008). In perception, secondary motor regions were 
recruited in musicians and non-musicians, and the dorsal premotor cortex appeared 
to mediate auditory–motor interactions (Chen et al. 2008). The dorsal auditory 
pathway is also implicated in rhythm performance, regardless of the modality in 
which the rhythms are trained and paced (Karabanov et al. 2009). Thus, both audi-
tory and motor areas play key roles in both rhythm perception and rhythm produc-
tion. A set of brain areas including dorsal auditory pathway areas, dorsal premotor 
cortex, the supplementary and presupplementary premotor areas, the cerebellum, and 
the basal ganglia are implicated. A key question is: What is happening in this dis-
tributed network?

Using EEG, Snyder and Large (2005) observed that peaks in the power of 
induced beta- and gamma-band activity anticipated tone onset (average ~0 ms 
latency), were sensitive to intensity accents, and persisted when expected tones 
were omitted, as if an event had appeared. By contrast, evoked activity occurred in 
response to tone onsets (~50 ms latency) and was strongly diminished during tone 
omissions. Recent MEG studies have found subharmonic rhythmic responses in the 
beta-band when subjects were instructed to impose a subjective meter on a periodic 
stimulus (Iversen et al. 2009), and anticipatory responses for periodic and metrical 
sequences, but not for randomly timed sequences in primary auditory cortex 
(Fujioka et al. 2009). Thus, the features of high-frequency brain activity match the 
main predictions for pulse and meter. Such observations could indicate cortical 
bursting, which can also arise from excitatory–inhibitory neural circuits (Izhikevich 
2007; see Fig. 7.1a). Bursting is a dynamic state where neurons repeatedly fire 
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groups, or bursts, of action potentials, and each burst is followed by a period of 
quiescence before the next occurs (Izhikevich 2007). Interburst periods, the time 
interval between one burst and the next, are generally consistent with timescales of 
musical pulse and meter. Burst oscillation is currently receiving a great deal of 
attention in the computational neuroscience literature, and mathematical analyses 
have shown that rhythmic bursting displays key properties (Coombes and Bressloff 
2005; Izhikevich 2007) that are necessary to predict pulse and meter. Figure 7.9 
shows a computational simulation of burst oscillation (Izhikevich 2000) responding 
to a simple rhythm, displaying both entrainment to the stimulus sequence (Fig. 7.9a) 
and oscillatory persistence in the absence of an element in this sequence (Fig. 7.9b).

Moreover, bursts of high-frequency activity could explain communication between 
different cortical areas (Brovelli et al. 2004). For example, oscillatory activity in the 
beta range is widely observed in sensorimotor cortex in connection with motor behav-
ior in humans (Pfurtscheller and Lopes da Silva 1999; Salenius and Hari 2003) and 
nonhuman primates (Rougeul et al. 1979; Sanes and Donoghue 1993; MacKay and 
Mendonca 1995). Synchrony of beta oscillations is often observed between different 
areas of sensorimotor cortex (Murthy and Fetz 1992; Sanes and Donoghue 1993). 
Moreover, synchronized beta oscillations may bind multiple sensorimotor areas into 
a large-scale network during motor behavior and carry causal influences from pri-
mary somatosensory and inferior–posterior parietal cortices to motor cortex (Brovelli 
et al. 2004). Anticipatory rhythmic bursts of beta activity may enable communication 
between auditory and motor cortices in rhythm perception and motor coordination as 
well. Rhythmic bursts of higher frequency gamma activity may also enable functional 
communication between different cortical regions. The theoretical picture that 
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Fig. 7.9 Response of a burst oscillator (Izhikevich 2000) to a rhythmic pattern. (a) Continuous 
time series representation of event onsets. (b) Bursts of activity entrain to the stimulus and are 
observed even in the absence of a stimulus event (From Large 2008, with permission)
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emerges is one of communication, through bursts of high-frequency activity, between 
different neural areas as they resonate to rhythmic patterns.

Entrainment of rhythmic neural bursting could explain how the perception of pulse 
and meter arise from listening to complex sequences, as well as the development of 
expectancy for events occurring in a rhythmic context. Dynamic attending theory 
(DAT) hypothesizes that endogenous attentional rhythms entrain to temporally struc-
tured external events (Jones 1976; Large and Jones 1999). DAT has traditionally been 
discussed in terms of facilitation of perception to certain external events, and this has 
found support in a number of recent studies (McAuley and Kidd 1995; Jones and Yee 
1997; Large and Jones 1999; Barnes and Jones 2000; Jones et al. 2002; Jones and 
McAuley 2005; Quené and Port 2005). However, conceptualizing attentional rhythms 
as rhythmic bursting provides a new hypothesis regarding the role of attention in 
coordinating the interaction between auditory and motor areas (Large and Snyder 
2009). Bursts of beta and gamma band activity that entrain to external rhythms could 
provide a mechanism for rhythmic communication between distinct brain areas, and 
attention may facilitate such integration among auditory and motor areas.

7.5.1  Summary

Entrainment of endogenous neural rhythms and higher order resonance could 
explain why metrical percepts favor small integer ratios. It can also explain how 
people perceive a regular pulse in highly syncopated rhythms and how listeners 
adapt to frequency fluctuations in expressive performances. Rhythmic bursting in 
higher frequency bands is a plausible neural correlate of pulse and meter. This 
could explain not only perceptual facilitation of expected events, but also functional 
integration of auditory and motor areas.

7.6  Summary and Conclusions

As noted at the outset, it is informative to compare theories of music with theories 
of language. Poeppel and Embick (2005) discuss a “conceptual granularity 
 mismatch” between cognitive and neurobiological mechanisms in language. That 
is, theories that are typically invoked to account for linguistic computation – in 
terms of syntax, meter, and semantics – are not related in any obvious way to the 
neurodynamics of synapses, neurons, and circuits. The theoretical picture they 
paint is potentially bleak and would seem to require a paradigm shift to reconcile 
the two approaches to language. However, it may be unnecessary to invite such 
theoretical difficulties into the musical domain. In music, our experiences of the 
fundamental universals, including pitch, tonality, and rhythm, can be readily con-
ceived in relation to neurodynamic universals, including limit cycle oscillation, 
resonance, and rhythmic bursting.



226 E.W. Large

Helmholtz (1863) originally envisioned that a proper understanding of auditory 
physiology should one day form the basis for a theory of music. However, the audi-
tory system is highly nonlinear, and Poincaré, the father of modern dynamical 
systems theory, was only a boy when Helmholtz penned the preface to the first edi-
tion of On the Sensations of Tone. Modern theories of auditory and music percep-
tion were built on the foundation of linear resonance. Where linear resonance has 
proven insufficient to explain cognitive and perceptual phenomena, complex 
mechanisms and general purpose computation have been recruited to fill the 
explanatory gaps. Known auditory nonlinearities can be described with well 
 developed concepts of modern neurodynamics. These phenomena are summarized 
in high-level dynamical models, called canonical models, which are appropriate for 
describing the macroscopic dynamics of neural populations and for describing key 
aspects of perception, cognition, and behavior. Neurodynamic models seem to 
 capture many features of music perception and behavior in their own terms, without 
the need to resort to more abstract computational descriptions. These observations 
suggest that our qualitative experiences of music arise as a direct consequence of 
the interaction of sound with the intrinsic dynamics of the nervous system.
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