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Abstract

This article describes an approach to metrical structure focussing on its role as an active lis-

tening strategy. The theory postulates that metrical structure is a self-organized, dynamic structure

composed of self-sustaining oscillations. The emergence of this structural representation is mod-

eled as a pattern formation process whose the neural correlate is the formation of a spatiotemporal

pattern of neural activity. The primary function of the dynamic structure is attentional: it enables

anticipation of future events thus, targeting of perception, and coordination of action with exoge-

nous events. Stability and flexibility properties arise through nonlinearities in the underlying pat-

tern-forming dynamics. Furthermore, this dynamic representation functions in musical

communication. Transient stimulus fluctuations observed in musical performance (e.g. rate

changes, intonation) are not noise, but rather communicate structural information, intention, and

affect. These communicative gestures are recognized as deviations from temporal expectations

embodied in the metrical structure. Experiments are reviewed that investigate stimuli of varying

complexity, from simple isochronous tone sequences to performed music, and the model’s suc-

cess at capturing these data is assessed.
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I: Periodicity, Pattern Formation, and Metric Structure

Listeners bring many different types of expectations to the musical experience. These in

expectations about patterns of melody, harmony, compositional structure, social context, an

behavioral responses. Performers and composers create patterns of sound with reference

expectations; in this way the listener can be said to play a causal role in the process of m

creativity. Thus, to understand the structure of music, it is helpful to understand the structu

listeners’ expectations. Perhaps the most basic of these is the expectation of periodicity and

generally, the expectation of stratified, multi-periodic structures. Structured temporal expect

often called metrical structure, provides a framework around which other aspects of mu

expectation are choreographed in time.

The question of metrical structure is an intriguing one because the notion of meter imp

perceptual structure that is stable enough to accommodate the astonishing temporal comple

musical patterns, yet one that is flexible enough to adapt to local temporal fluctuations su

rubato, and to reorganize itself when stimulus structure changes. Furthermore, the challe

articulating a viable theory of meter perception goes beyond that of describing a metho

objective analysis of the musical material. The perception of metrical structure is not mere

analysis of rhythmic content, rather it shapes an active listening strategy in which the liste

expectations about future events can play a role as important as the musical events themselv

percept of musical meter reflects a dynamic attending capacity, it is the experience of an inhe

rhythmic component of auditory attention (Jones, 1976; Large & Jones, 1999).

This article considers the hypothesis that the temporal structure of listeners’ expectati

a dynamic, self-organizing multi-periodic structure. It describes how the emergence of

structural representation can be modeled as a pattern formation process whose neural cor

the formation of spatiotemporal patterns of neural activity. A primary function of this structu

attentional: it allows anticipation of future events, enabling perceptual targeting, and coordin

of action with musical events. This article focusses on four main questions. How do me

patterns form? How do structures reorganize in response to structural change? How do str
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accommodate the temporal fluctuations found in music performance? How do metrical stru

support communication between performer and listener?

II: A Model of Meter Perception

Let us begin by stating some background assumptions. The termrhythmwill be used to refer

to the pattern of timing and accentuation of a complex sequence, as shown in Figure 1.Accent

means the phenomenal accent (cf. Lerdahl & Jackendoff, 1983) associated with each so

event. Phenomenal accent arises through a combination of acoustic variables including

loudness, timbre, and duration. In the study of rhythm perception and performance, a conc

division is usually made between meter, a perceived temporal–accentual structure, and gro

the segmentation of the auditory event into meaningful structural units, such as phrases. R

timing and phenomenal accent both provide perceptual cues to both meter and grouping. F

illustrates both forms of rhythm organization.

Insert Figure 1 about here.

The basic element of meter is a beat, a series of perceived pulses marking subjectively

units of time. Perceived beat is an inference from the acoustic stimulus (Cooper & Meyer, 1

Lerdahl & Jackendoff, 1983), and functions as an expectation for when events are likely to

in the future (cf. Large & Kolen, 1994). Meter is a more complex temporal accent scheme

describes the perception of regularly alternating strong and weak beats, sometimes describe

simultaneous perception of beats on multiple time scales (Lerdahl & Jackendoff, 1983; Ye

1976). Temporal locations at which beats of several levels coincide are termedstrongbeats, those

at which few levels coincide areweak. Meter is a complex form of temporal expectation: Acous

events are more strongly expected at strong beats, and less expected on weak beats (cf.

1992; Large & Jones, 1999). Grouping structure refers to the way the acoustic stream is pars

meaningful structural units (Lerdahl & Jackendoff, 1983), as notated above the musical st

Figure 1. A significant body of research has investigated cues to grouping, which include g
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pattern structure, local patterns of timing and accent, and performance cues (see e.g. Ga

Gottwald, 1968; Povel, & Okkerman, 1981; Palmer, 1997).

Formation and Stability of Metrical Structures

According to Cooper & Meyer (1960) a perception of beat generally arises in respons

periodicity present in the musical signal, but it is stable in the sense that once perceived it ma

tinue even when the periodicity is interrupted in some way. To model this phenomenon,self-sus-

tained oscillationis proposed as the basic model of musical beat. A self-sustained oscillati

autonomous in the sense that, once activated, it can persist, even after stimulation ceases or

in significant ways. However, it also has the property that it entrains to incoming rhythmic sig

The simplest mathematical form for self-sustained oscillation is called theHopf oscillator(Arrow-

smith & Place, 1990), which can be written as a differential equation in the complex variable

(1)

Here the dot operator denotes the differentiation with respect to time (e.g. ),

energy parameter, and is the eigenfrequency (inverse of period) of the oscillator. The be

of this system is best understood by transforming to polar coordinates using the ide

, and separating real and imaginary parts. The transformation yields a sy

of two differential equations, describing the time evolution of amplitude and phase respecti

(1a)

(1b)

The transformation reveals that the amplitude and phase of the Hopf oscillator are indepe

Thus, by setting to zero, we can find the stable states of the system. Such an analysis

two steady state behaviors; the value of the energy parameter determines which beha

observed, as shown in the Figure 2. Whenα is less than zero (energy is being removed from t

system), the system has a stable fixed point with r = 0, and thesystem behaves as a damped osc

lator. For parameter values greater than zero (energy is being added into the system), a stab

z t( )

ż αz iωz+ z z2–=

ż dz dt⁄= α

ω

z t( ) r t( ) iφ t( )exp=

ṙ r α r 2–( )=

φ̇ ω=

ṙ
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cycle develops; the system generates a self-sustained oscillation. The pointα=0 is called abifur-

cation point: It is the point at with the behavior changes qualitatively from damped oscillatio

self-sustained oscillation. This type of bifurcation is called a Hopf bifurcation.

Insert Figure 2 about here.

Representation of metrical structure can be modeled by a network of oscillators with diff

periods, competing for activation through mutual inhibition. Oscillations that are most conso

with the input (see Large, 2000a) tend to deactivate those that do a poorer job of predictin

incoming rhythm. In response to a rhythmic pattern a few oscillations achieve stable activ

those that best summarize temporal structure of the stimulus. This pattern-formation proc

captured with the addition of an interaction term into Equation 1:

(2)

whereγ is an interaction matrix, . As above, transformation to polar coordinates sh

that in Equation 2 amplitude and phase are independent.

(2a)

(2b)

As shown in Figure 3A, activation of one oscillator effectively moves the bifurcation point of

other oscillator. Theγ matrix specifies the new activation thresholds relative to the energy par

eters of competing oscillators. For example, in a two-oscillator network, when one oscillati

active, the second oscillator’s energy must exceed a certain proportion of the active oscil

energy in order for it to activate; the required proportion is given by the strength of the inhib

parameter. Figure 3B shows the four metrical patterns that can arise in such a network, a

conditions – in terms of relative parameter values – under which each exists and is stable.

Insert Figure 3 about here.

zn
˙ αnzn iωnzn+ zn zn

2– γmnzn zm
2

m n≠
∑–=

γmn 0≥

r n
˙ r n αn rn

2–( ) γmnrnrm
2

m n≠
∑–=

φn
˙ ωn=
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The pattern forming dynamics described by Equation 2 provides a number of intere

properties. First, it describes the formation of metrical structures. The simple analysis provid

the two oscillator network extends in a straightforward way to any number of oscillators, and

possible to tie the parameters to the rhythmic stimulus in such a way that distinct me

representations arise within the first few beats of a musical rhythm (Large, 2000a). It also m

predictions about the stability of metrical representations. Once a metrical pattern forms

network it tends to persist, to remain stable even when a rhythmic pattern comes into conflic

its predictions. Among other things, this provides a basis for understanding phenomena s

syncopation. Given rhythmic contradiction that is strong or consistent enough, the network

also reorganize its metrical representation.

The formation and stability of patterns in such a system are best studied under conditio

multistability. Referring back to Figure 3B, note that the stability conditions for patterns 2 an

are not mutually exclusive1. The network cannot occupy both states simultaneously, however.

situation is called bistability, and in a larger network, multistable states are also possible. In its

general form, the theory predicts that certain rhythmic patterns can support more than one

metrical representation (Large, 2000b). An observable consequence of multistability ishysteresis,

the persistence of a structural representation despite stimulus parameters that would normal

an alternative structural interpretation. In section III, evidence regarding the formation and sta

of metrical representations is reviewed.

Synchronization and Communication

How does the rhythmic stimulus influence the network? Details of how musical rhythm

input are discussed in (Large, 2000a). In this article, a simplified model in considered, one

captures the phase dynamics of a single active oscillation in the network, driven by an ex

rhythm (Large & Kolen, 1994). This type of discrete time dynamical model is called a ph

attractive circle map (cf. Kelso, deGuzman, & Holroyd, 1990). The series of phases produc

this circle map represents the phases of the oscillation at which auditory events occur. F
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musical point of view, the primary feature of interest is that the oscillation isphase coupledto the

stimulus, such that it synchronizes with certain stimulus events in the external signal.

(3)

Equation 3 maps event onset times onto the phase of the internal oscillation as depic

Figure 5, where is the period of the oscillation andIOIi is theith inter-onset interval ( )

of the auditory event sequence. Incorporation of stimulus IOI’s enables the model to pr

responses to any rhythmic pattern (Large & Kolen, 1994). The phase coupling t

, models entrainment of the oscillator with the signal, where is coupl

strength, is the amplitude of theith event, and is a coupling function (Large &

Kolen, 1994; Large & Palmer, 2001). This model can maintain synchrony with a musical rhy

even in the presence of small random timing fluctuations.

Insert Figure 4 about here.

Phase coupling alone, however, is not sufficient to model entrainment in the presence of

systematic timing fluctuations, such as musical rubato. If the tempo of a musical perform

changes too much, for example, the oscillator will simply lose synchrony. To maintain synch

listeners must track tempo fluctuations. To explain this, it is necessary to assume that the pe

the internal oscillation adapts to a changing stimulus tempo (Large & Kolen, 1994):

(4)

Equation 4 serves as a simplified model of period adaptation, which corresponds to smooth

ment of peak activations in the oscillator network of Equation 2 (cf. Figure 5A, below).

Once the musical stimulus enters the picture, it is possible to make predictions about th

time tracking of auditory events. This model predicts synchronization with temporally com

stimuli and flexible adaptation to natural temporal fluctuations of the type found in perfor

music. Specific patterns of phase and period adaptation, should be observed in response to t

φi 1+ φi

IOI i

p
---------- ηφXiF φi κ,( )–+= mod 0.5– 0.5, 1( )

p ti 1+ ti–

ηφ– XiF φi κ,( ) ηφ

Xi F φi κ,( )

pi 1+ pi piηpXiF φi κ,( )+=
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stimulus perturbations. For simple metronomic stimuli, these tracking predictions are simi

those of linear error correction models (e.g Vorberg & Wing, 1996). However, the oscill

network model is more general. It includes nonlinear phase correction, models adaptation of

as well as phase, and accommodates rhythmically complex sequences. Finally, the model

predictions about the perception of expressive timing. Transient tempo fluctuations observ

speech and musical performance (e.g. rate changes, intonation) communicate structure, in

and affect. The theory models communication by assuming that listeners recognize commun

temporal gestures as deviations from temporal expectations embodied in attentional structu

section III, I describe experiments that evaluate both aspects of the model’s predictions

responses to rhythmic patterns.

III: Some Examples

In the previous section, a model was introduced that made a number of predictions.

included predictions about the formation of temporally structured representations, the persi

or stability of representations, real-time temporal tracking of stimulus fluctuations, and mu

communication based on expressive performance timing. In general, these predictions

evaluated with many different types of stimuli. Some of the most interesting involve perceiving

attending to natural, performed musical rhythms. Thus, one approach to understanding these

is to investigate perception of music performances directly. In addition, using simpler seque

one can make more controlled observations regarding, for example, temporal tracking. I

section I describe how both types of stimuli are used to evaluate the predictions of the non

pattern formation approach to the perception of metrical structure.

Formation of Metrical Structures

One way to assess the formation of metrical structures is to ask participants to exp

describe their metrical perceptions. In one such study, Snyder and Krumhansl (2000) inves

the nature of mental pulse-finding using a synchronization tapping task. They presented mu
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with excerpts of eight ragtime piano pieces, and asked them to tap the most comfortable pu

each excerpt on a piano keyboard. In Snyder and Krumhansl’s study, the musical excerpt

generated by computer so that the timing of the individual events was metronomically pre

The pieces were played to participants via MIDI, using a digitally sampled piano timbre. To

trol different types of pulse-finding cues that were available, four versions of each piece were

erated. First, full versions (both LH and RH parts) and right-hand only (RH) versions w

created. The elimination of the left hand part created a version of the music that was more s

pated, and potentially more metrically confusing than the full version, because fewer e

occurred on the downbeats. Next, based upon each of these two versions, two additional

were created from which non-temporal cues were eliminated. In these, all pitches were chan

middle C, creating monotonic versions of the excerpts. The elimination of pitch information

ated versions of the music in which pitch cues could not be used to resolve metrical ambi

thus these versions served as a gauge of the role of pitch information in structure formation

To test the model, Snyder & Krumhansl’s MIDI recordings were played on a Kawai

digital piano, and the acoustic signal was passed through a simple auditory model, approxim

processing in the earliest stages of the auditory system: frequency filtering by the coc

mechanical to neural transduction at the level of the primary afferents, and onset responses

can be observed as early as the cochlear nucleus (cf. Scheirer, 1998; Todd, 1994). This p

produced a rhythmic signal comprised of event onsets. The onsets drove the network thro

multiplicative coupling that tied the energy parameter,α, of each oscillation to its success i

predicting upcoming events in the rhythm (Large, 2000a). Using this approach, model predi

were compared with the results of Snyder & Krumhansl’s (2000) experiment.

The network makes several predictions, two of which are shown in Figure 5. First, a pa

of oscillations arises in response to the musical rhythm, forming a dynamic representat

metrical structure. This can be seen in Panel A, which summarizes network performance f

entire excerpt as average amplitude. Four peaks in network amplitude are evident, corresp

to oscillations at the 1/16, 1/8, 1/4, and 1/2 note metrical levels. This is one of many diffe

metrical patterns that can be stabilized within this network. The spectral properties of the rh
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Insert Figure 5 about here.

But amplitude is only half of the story, the sustained oscillations also synchronize to

rhythm, predicting phase (Panel B). Snyder & Krumhansl measured the phase – the location

the measure – at which people tapped along with the excerpts, i.e. whether they tapped

downbeat, upbeat, neither (at some other metrical location), or in an aperiodic fashion

musicians almost always tapped on the downbeat for the full pitched versions, but tap

performance broke down as information was removed from the stimulus. To model this, the h

amplitude oscillation (the 1/4 note level) was used to predict the period at which people wou

along with the rhythm. The network predicted tapping phase well for natural musical signals

although as a whole it produced taps less often on the downbeat than the musicians, the n

produced a similar pattern of breakdowns as accompaniment (LH) and pitch information

removed from the stimulus.

Overall, when stimulated with rhythmic input, the pattern-forming dynamical system o

2 gave rise to metrically structured patterns of oscillation. It provided reasonable predictio

human performance for natural music, and network performance deteriorated similarly to h

performance as stimulus information is degraded. For both the model and for the musi

increased syncopation was more disruptive to synchronization than lack of pitch informa

Thus, this test suggests that the nonlinear pattern formation approach may be on the righ

However, these stimuli did not contain any temporal fluctuation, thus predictions about te

tracking cannot be assessed. Furthermore, the musicians tapped at only one level metrica

leaving the network’s predictions about multiple structural levels untested. Using other

niques, however, it is possible to gauge other aspects of the network’s predictions.
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Stability of Metrical Structures

How can we assess which of several possible metrical interpretations is heard for a

rhythm? To ask this question, it is necessary to identify a task that directly measures the form

of multi-leveled structures. Evidence suggests that the categorization of rhythmic patterns pr

such a task, one that taps directly into listeners’ dynamic representations of metrical stru

Clarke (1987) demonstrated that ambiguous temporal ratios (between 1:1 and 2:1) were

likely to be categorized as 2:1 in the context of triple meter, whereas these same ratios were

likely to be categorized as 1:1 in the context of duple meter. Clarke interpreted his results in

of two processes operating in rhythm perception. One places temporal intervals into cate

depending on the prevailing metrical context, the other interprets deviations from categ

precision as musically expressive gestures.

Furthermore, in dynamical systems terms, Clarke’s data provide evidence ofhysteresisin

meter perception, the persistence of a percept (e.g. a duple meter) despite a change in the s

that favors an alternative pattern (e.g. a triple meter). As discussed above (see Figure 3B) hys

occurs in situations of multistability. Multistability and hysteresis are fundamental prediction

the nonlinear pattern formation theory, thus tests of these predictions provide key assessm

this approach. In one study, a rhythmic pattern composed of three event onsets was gra

changed such that its metrical interpretation would be altered (Large, 2000b). Onincreasingtrials,

a 1:1 time interval ratio, implying a duple metrical structure, was gradually changed to a 2:1

favoring a triple metrical structure (Figure 6A); ondecreasingtrials, the 2:1 ratio gradually

changed to a 1:1 ratio. Participants were asked to categorize the rhythmic pattern as eitherdupleor

triple. Because it was possible that some intermediate patterns would be heard as neither du

triple, a third response category,neither, was included. Also, the potential for confoundin

perceptual hysteresis with response hysteresis was minimized using the modified method o

procedure (Hock, Schöner, & Kelso, 1993). Changes occurred within the context of a rhyt

sequence, such that the model predicted that a two-leveled metrical structure would be per

as shown in Figure 6B (anincreasing trial is pictured).
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Insert Figure 6 about here.

To produce model predictions, it was assumed that when two oscillations were active

with a period corresponding to the base interval, and the second with one-half the period of th

interval, the model (i.e. Equation 2) responded “duple”. When the second oscillation had one

the period of the base interval, the model responded “triple”. When only one oscillati

corresponding to the base interval – was active, the model responded “neither”. All t

oscillations competed with one another. Figure 6C compares representative predictions

model with experimental results. Here, the perceptual boundary between the categories “

and “not duple” are compared in the decreasing context (subject was asked to respond as

pattern was clearly duple) and theincreasingcontext (subject was asked to respond as soon

pattern became anything other than clearly duple) and for one subject. For both the model a

subject hysteresis was observed. Onincreasingtrials, both persisted in the perception of “duple

for quite some time; ondecreasingtrials both persisted in judgements of “not duple” until th

stimulus is very nearly true 1:1. This result provides strong evidence of multistability, suppo

the nonlinear pattern formation approach.

The results of this study are consistent with the general prediction of hysteresis in m

perception, and specific patterns of results can be used to fit model parameters for each s

Other issues remain to be investigated, however. For one, studies such as this one simply

that categorization is based on an underlying representation of metrical structure. In prin

however, this assumption could itself be tested. Additionally, if some rhythms truly do pos

bistable metrical interpretations, then even more dramatic effects should be observed in

complex musical sequences. Finally, this study addressed only the first of the two proc

proposed by Clarke (1987), categorization of an imperfect temporal interval according to a

metrical framework. But what happens when the tempo of a sequence changes? How do

track the temporally fluctuating stimulus? How do temporal fluctuations communicate mu

expression?
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Tracking Temporal Fluctuations

Real-time tracking is most directly measured using tasks such as synchronization tapp

which people are required to coordinate bodily movements with auditory patterns. The abil

coordinate motor behaviors with auditory stimuli has been widely studied (e.g. Bartlett & Bar

1959; Dunlap, 1910; Fraisse, 1956 Kohlers & Brewster, 1985; Michon, 1967; Stevens, 1886

Mates, & van Kruysbergen, 1994; Woodrow, 1932). Most studies have investigated synchro

tion to simple, structurally isochronous sequences. These have uncovered several robust

ioral phenomena, and various models have been proposed to account for these findings,

include rate dependence, anticipation bias, patterns of variability, compensation for phase

bations, and learning (e.g. Chen, Ding, & Kelso, 1997; Hary & Moore, 1987; Kelso, DelColle

Schöner, 1990; Mates, Radil, & Pöppel, 1992; Pressing & Jolley-Rogers, 1997; Semjen, Vo

& Schulze, 1998; Vorberg & Wing, 1996, Zanzone & Kelso, 1992). However, such models

yet to be convincingly extended to more complex and naturalistic stimuli, such as music. Eve

simplest musical performance presents considerably more complexity than the ticks of an

tory metronome. And while a great deal is known about synchronization with simple aco

sequences, relatively little is known about how people accomplish the similar feat of synchro

tion with more complex auditory stimuli.

In one study, Large, Fink, & Kelso (2001) addressed issues of synchronization to rhy

that approached musical complexity. In two experiments, synchronization to simple and

complex rhythmic sequences was investigated. Their first experiment examined responses t

and tempo perturbations within simple, structurally isochronous sequences, presented at d

base rates. Phase and tempo perturbations were embedded, at random intervals, in ot

isochronous tone sequences. Subjects were asked to synchronize finger taps to these se

Figure 7 shows model predictions (top) and representative data for a single subject (bo

responding to a phase perturbation (left) and a tempo perturbation (right), where perfect sync

is indicated by , an early tap by and a late tap by . The overshoot in the resp

to the phase perturbation combined with the smoother relaxation profile for the tempo perturb

are evidence for period adaptation, and are nicely predicted by the model (Equations 3.

φ 0= φ 0< φ 0>
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Another experiment investigated responses to similar perturbations embedded within

complex, metrically structured sequences; participants were explicitly instructed to synchron

different metrical levels (i.e. tap at different rates to the same rhythmic patterns) on different

Large, et. al. (2001) found evidence that people can synchronize with unpredictable, metr

structured rhythms at different metrical levels, with qualitatively different patterns

synchronization seen at higher versus lower levels of metrical structure. Furthermore, int

tapping frequency adapts in response to temporal perturbations in these complex rhythm

synchronization at each tapping level reflects information from other metrical levels.

Insert Figure 7 about here.

This study provided evidence for a dynamic and flexible internal representation o

sequence’s metrical structure. The unpredictability of the patterns in Experiment 2 rules o

possibility that coordination of action depended upon learning of specific rhythmic patterns

Vorberg & Hambuch, 1984; Pressing, 1999). Furthermore, successful recovery from phas

tempo perturbations in unpredictable rhythms disconfirms the hypothesis that temporal track

based solely upon prior learning of specific sequences of auditory events (cf. Cottrell, Nguy

Tsung, 1993). Taken together with the observation that musicians and non musicians perf

equivalently, the basic finding points to a natural, inherently rhythmic faculty, that is not base

learning of specific event sequences, rhythmic patterns, or response strategies. But wha

perception: how do temporal fluctuations function in musical communication?

Musical Communication

The temporal fluctuations observed in naturally performed music are not arbitrary tem

perturbations as in the above study. Rather, the transient fluctuations observed in m

performance communicate structure, intention, and affect. Performers use temporal fluctuat

communicate musical interpretation, including interpretations of phrase structure, melody

meter (for a recent review, see Palmer, 1997). Indeed violation of musical expectations, in ge

is thought to be critical in the communication of emotion and meaning in music (e.g. Meyer, 1



Periodicity and Pattern 16

ed to

usical

o, are

ects of

1995).

hich

nists

rked in

rase

tended

the

a real

an be

ns in

orize

ations

tions 3

d more

). This

lled an

ctancy

acy of

rmed

poral
Narmour, 1990). Furthermore, certain aspects of temporal structure have been link

communication of emotion and affect, even across performers and listeners of different m

cultures (Balkwill & Thompson, 1999).

Deviations from a regular beat or pulse in music performance, sometimes called rubat

often largest near phrase boundaries. One study of music performance examined the eff

phrase structure on temporal fluctuations in piano performances (Palmer & van de Sande,

In this study, performances of polyphonic music by Bach (two- and three-part inventions) w

contained multiple voices were collected on a computer-monitored acoustic piano. Pia

performed the same musical pieces in terms of three different phrase structures as ma

different versions of the music notation; in a control condition, there were no marked ph

boundaries. Palmer & van de Sande (1995) found that performers reliably used rubato at in

phrase boundaries.

This result provides two challenges to the oscillator model. First, beat tracking in

presence of rubato provides a test of the model’s ability to adapt to a changing tempo in

performance. Second, the model’s sensitivity to deviations from its temporal expectations c

compared with performers’ structural intentions to further test how the temporal fluctuatio

music performance may be informative for listeners. To do this, the model must both categ

temporal intervals in the presence of musical rubato, while at the same time registering devi

from expected timing.

Phrase boundary detection was accomplished using an extension of the model (Equa

& 4) described by (Large & Jones, 1999). Events occurring at expected times are processe

accurately and efficiently than events occurring at less expected times (Large & Jones, 1999

is captured as a concentration of attentional resources about expected time points ca

attentional pulse. A parameter called attentional focus indexes the concentration of expe

about the expected time point ( ), and focus adapts dynamically based upon the accur

the oscillator’s predictions. The salience of a temporal deviation (for example, an event perfo

later than expected) increases not only with the size of the deviation but also with the tem

φ 0=
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regularity of the performance. Large & Jones successfully used this framework to pr

performance in time discrimination tasks.

In an application to musical performance (Large & Palmer, 2001), a two-oscillator mode

tracked the fluctuating temporal structure, categorizing event onsets according the meter, an

determined the probability that individual events marked phrase boundaries as shown in Fig

The model performed remarkably well in finding intended phrase boundaries, predicting perc

phrasing, thus modeling communication between performer and listener.

Insert Figure 8 about here.

IV: Conclusions and Future Directions

The theoretical approach described in this article model the perception of metrical stru

as a nonlinear pattern formation process that can be driven by a rhythmic stimulus. Many fe

of the patterns that form in the network described here match those that were report

musicians, at least those that were tested in the case of ragtime piano music. Stability prope

perceived metrical structure – a measure of independence from the rhythmic signal that dr

formation of the original pattern, the tendency to remain stable in the face of rhythmic confl

are captured in this framework by nonlinearities in the pattern forming system. These

properties allow the structure to yield when rhythmic conflict becomes strong or consistent en

as seen in the categorization study. In any such system, the basic signature of a non

mechanism is hysteresis – persistence of a percept despite a change in the stimulus that fa

alternative percept. Hysteresis was reported here in one experiment, and musical intuition su

that many more interesting cases of rhythmic multistability remain to be investigated in

laboratory.

Rubato also provides an interesting demonstration of the flexibility of metrical percepts

Clarke (1987) observed, people possess the ability not only to categorize imperfect tem

intervals, following the meter despite tempo changes, but they also respond meaningfully to

ations from temporal expectations, understanding the meaning of musically expressive tem
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gestures. The theory described here accommodates rubato by postulating a period ada

mechanism, while at the same time capturing the response to expressive timing using a

time discrimination model. The period adaptation model accurately predicted the response

ficial tempo perturbations, and also fared well in tracking temporal fluctuations in express

timed musical performances. In the latter, the model was also able to reliably detect inte

phrase boundaries, capturing one aspect of musical communication between performer a

tener.

Although aspects of this approach seem muscially intuitive, and several predictions sta

to empirical scrutiny, the models presented in this article are merely steps along the path to a

complete understanding of rhythm perception. The mathematical models described he

formulated at a level that captures the phenomenology of meter perception directly, wi

modeling the details of the neural structures that give rise to this experience. The Hopf osci

for example, is a normal form dynamical system, a mathematical abstraction that discar

details of particular physical systems, succinctly capturing the basic properties that are s

among a family of more complex differential equations. Normal form dynamical systems are

rather specific mathematical sense, the simplest systems that capture the basic phenomeno

study (Arrowsmith & Place, 1990). Thus the pattern forming system of Equation 2 is, in a s

the simplest dynamical system that will exhibit the properties that we have exploited here to m

meter perception.

There are two main advantages to modeling at the phenomenological level. The m

systems that are developed are susceptible to mathematical analysis, and predictions are m

level that is appropriate to behavioral investigation. Thus, for example, the predictions of hyst

in meter perception (Figure 3B) can be worked out analytically, such that behavioral data c

used to fit model parameters. The circle map model (Equations 3 & 4) is a further simplificati

the normal form model, taking external input into account (see Large, 2001). The discrete

phase equation is a straightforward discretization of the continuous phase dynamics, and

adaptation replaces amplitude dynamics with the assumption that the period of each ne
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oscillation can adapt smoothly in response to tempo changes. These forms of the model s

numerical analysis (e.g. Large & Kolen, 1994, deGuzman & Kelso, 1991), and they are partic

convenient for modeling synchronization performance, time discrimination, and the percept

expressive timing.

Future modeling work should proceed along two fronts. The first concerns the us

information that goes beyond event onsets. The current models rely only on onset tim

amplitude, and frequency information, which is recoverable from acoustic recordings, an

been used as input to continuous-time models such as Large (2001) of Scheirer (1998). Ho

such models do not make use of all of the information relevant to human meter perception,

includes information about pitch, melody, and harmony. Such information is not yet f

resolvable from acoustic recordings, thus other avenues will have to be investigated. He

discrete-time formulation offers some advantages over its continuous-time cousin, for examp

ability to work directly with MIDI recordings. Modeling using MIDI signals could take advanta

of information that is available to the auditory system, without first solving the equally diffic

problem of how the auditory system resolves such information For example, Toiviainen (1

uses MIDI information to drive a continuous-time model that takes event duration into acco

Second, theories of meter perception should move toward the development of more ne

realistic models. Single neuron Hogkin-Huxley type equations are currently being investigate

modeling of interval selective auditory neurons (e.g. Large & Crawford, 2001; Crawford, 19

The disadvantage of such models is that their analytical and computational complexity m

predictions regarding high-level phenomena such as meter perception difficult to directly eva

Recently, Eck (2000) has described a model of meter perception based on a single neuron

known as the FitzHugh-Nagumo oscillator. The FitzHugh-Nagumo oscillator is essentia

mathematical simplification of the Hogkin-Huxley model, one that is more tractable, b

analytically and computationally. Other possibilities for neural modeling include so-called ne

field equations (e.g. Jirsa & Haken, 1996; Amari, 1977), which attempt to capture population



Periodicity and Pattern 20

g data

milar

s (e.g.

here

hough

bie,

982),

it is

eighth-

rations

1987;

ory

s

h and

erall,

ortant

ent vs.

ffect.

guistic

of a

nder-

ited

lection

po-

tion,
dynamics of neural ensembles. Such model will become especially relevant as neural imagin

becomes available for musical rhythm perception (cf. Mayville, et. al., 1999; Meaux, 2000).

Another promising area in the study of rhythm perception is, of course, is language. Si

descriptions of meter and grouping have been advanced by linguists and music theorist

Hayes, 1984; Lerdahl & Jackendoff, 1983; Liberman, 1975; Selkirk, 1984; Yeston, 1976), w

direct analogies are often made between the rhythmic organization of music and speech. Alt

simple approaches to timing in language (e.g. “stress” versus “syllable” timing; Abercrom

1967; Pike, 1945) have not received strong empirical support (Hoequist, 1983; Roach, 1

timing in music is significantly more complex and flexible that is commonly assumed. In fact,

remarkable that listeners are able to perceive durational categories corresponding to the

notes, quarter-notes, half-notes, and so forth, of musical notation because the actual du

measured in music performance deviate greatly from notated categorical durations (Clarke,

Longuet-Higgins & Lee, 1982). Temporal fluctuation is commonly observed in all audit

communication, (time-warpingin speech,expressive timingin music), and temporal perturbation

are not noise. Rather they communicate information about things like grouping in both speec

music (Lehiste, 1977; Price et. al., 1991; Palmer, 1989; Shaffer, Clarke & Todd, 1985). Ov

transient stimulus fluctuations (temporal fluctuation, phenomenal accentuation) are quite imp

in auditory communication, distinguishing pragmatic categories of an utterance (e.g. statem

question), signalling focus, marking the boundaries of structural units, and communicating a

Recent studies have already begun to investigate the relevance of dynamical models for lin

rhythm (e.g. Cummins & Port, 1999).

To sum up, from the listener’s point of view, meter is more than an objective analysis

rhythmic input signal. The perception of metrical structure is a stable dynamic pattern that u

lies a dynamic attentional strategy. Attention, in this view, is not a filter that protects a lim

capacity information processing mechanism (cf. Broadbent, 1958), rather is a process of se

for action (cf. Allport, 1989). Dynamic attending, as conceived here, aids in selection of tem

rally coherent auditory events for interaction, whether it be participating in an improvisa
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coordinating toe-taps with a drummer, taking turns in a conversation, or simply focussing

piano accompaniment for more careful scrutiny. The theory explains how people maintain a

attentional focus over temporally extended events while flexibly adapting to transient tem

fluctuations. It provides mathematical models of dynamic structural representation, meanin

extending previous approaches to auditory attending. It makes predictions about general p

ties of the neural correlates of auditory representation, attention, and communication. Fina

applies to complex, temporally structured event sequences, explaining how people respond

auditory complexity of the real world.
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Reference Notes

1For example, when and , pattern 2 and pattern 3 are

both stable.

α1 α2 1= = γ2 1, γ1 2, 1.5= =
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Figure Captions

Figure 1. Opening Aria from Bach’s Goldberg Variations. The metrical structure (below

staff) is triple: strong-weak-weak. The grouping structure (above staff) marks two phrase

Figure 2. A Hopf oscillator models activation of a self-sustained oscillation (Equation 1).

For parameter values less than zero, the system generates a damped oscillation; for va

greater than zero a stable limit cycle develops: the system generates a self-sustain

oscillation.α=0 is the bifurcation point, the parameter value at with the behavior change

qualitatively.

Figure 3. Competition (Equation 2) in a two-oscillator network. (A) Competition from

oscillator 2 moves the bifurcation point of oscillator 1. (B) Metrical patterns and associate

stability conditions for the two-oscillator network. Four metrical patterns can arise this

simple network. The stability condition for patterns 2 and 3 are not mutually exclusive, thu

this parameter region is bistable.

Figure 4. Relative phase and the circle map. Time,t, is mapped onto phase, , by

Equation 3 such that the expected onset time, is transformed to an expected pha

. Circle maps work in relative phase directly, mapping points on the circle to new

points on the circle ( ). Adapted from (Large & Jones, 1999).

Figure 5. (A) A temporal pattern of oscillations arises in response to a musical rhythm

dynamically representing its meter: a binary structure with 4 metrical levels (amplitude

peaks are shown). The most prominent pulse level (the highest peak) predicts the period

which people will tap along with the rhythm. (B) The oscillators also synchronize to the

rhythm, predicting the phase at which people will tap, and the patterns of phase instabili

that occur as pitch information is removed (Monotonic) and as rhythmic complexity is

increased (RH). Data from Snyder & Krumhansl (2000).

φ

t tx=

φ 0=

φn φn 1+→
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Figure 6. The categorization experiment: stimuli and results. (A) 1:1 ratios imply duple

metrical structure, 2:1 ratios imply triple structure. Rhythmic patterns were gradually

changed from duple to triple, and subjects were asked to categorize them asduple, triple or

neither. (B) An increasing trial: the duple rhythmic pattern gradually changes toward a

triple rhythmic pattern. (C) The model predicts hysteresis in the boundary betweenduple

andnot duple. Data from one subject also shows hysteresis at this boundary.

Figure 7. The model (Equations 3 & 4) predicts motor tracking responses to phase an

tempo perturbations in isochronous sequences. Both model and data show overshoo

response to phase perturbations, and smoother relaxation from tempo perturbatio

indicating an internal period correction process.

Figure 8. (A) Categorization of note events (dark = strong beat, light = weak beat), and (B

probability of lateness (see Figure 4) relative to categories. The intended phrasin

(instructions to performer) is shown above. The network predicts perceived phrasing

modeling communication between performer and listener (Adapted from Large & Palme

2001).
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