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Abstract

This article describes an approach to metrical structure focussing on its role as an active lis-
tening strategy. The theory postulates that metrical structure is a self-organized, dynamic structure
composed of self-sustaining oscillations. The emergence of this structural representation is mod-
eled as a pattern formation process whose the neural correlate is the formation of a spatiotemporal
pattern of neural activity. The primary function of the dynamic structure is attentional: it enables
anticipation of future events thus, targeting of perception, and coordination of action with exoge-
nous events. Stability and flexibility properties arise through nonlinearities in the underlying pat-
tern-forming dynamics. Furthermore, this dynamic representation functions in musical
communication. Transient stimulus fluctuations observed in musical performance (e.g. rate
changes, intonation) are not noise, but rather communicate structural information, intention, and
affect. These communicative gestures are recognized as deviations from temporal expectations
embodied in the metrical structure. Experiments are reviewed that investigate stimuli of varying
complexity, from simple isochronous tone sequences to performed music, and the model’s suc-

cess at capturing these data is assessed.
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I: Periodicity, Pattern Formation, and Metric Structure

Listeners bring many different types of expectations to the musical experience. These include
expectations about patterns of melody, harmony, compositional structure, social context, and even
behavioral responses. Performers and composers create patterns of sound with reference to these
expectations; in this way the listener can be said to play a causal role in the process of musical
creativity. Thus, to understand the structure of music, it is helpful to understand the structure of
listeners’ expectations. Perhaps the most basic of these is the expectation of periodicity and, more
generally, the expectation of stratified, multi-periodic structures. Structured temporal expectation,
often called metrical structure, provides a framework around which other aspects of musical
expectation are choreographed in time.

The question of metrical structure is an intriguing one because the notion of meter implies a
perceptual structure that is stable enough to accommodate the astonishing temporal complexity of
musical patterns, yet one that is flexible enough to adapt to local temporal fluctuations such as
rubato, and to reorganize itself when stimulus structure changes. Furthermore, the challenge of
articulating a viable theory of meter perception goes beyond that of describing a method for
objective analysis of the musical material. The perception of metrical structure is not merely an
analysis of rhythmic content, rather it shapes an active listening strategy in which the listener’s
expectations about future events can play a role as important as the musical events themselves. The
percept of musical meter reflects a dynamic attending capacity, it is the experience of an inherently
rhythmic component of auditory attention (Jones, 1976; Large & Jones, 1999).

This article considers the hypothesis that the temporal structure of listeners’ expectations is
a dynamic, self-organizing multi-periodic structure. It describes how the emergence of such
structural representation can be modeled as a pattern formation process whose neural correlate is
the formation of spatiotemporal patterns of neural activity. A primary function of this structure is
attentional: it allows anticipation of future events, enabling perceptual targeting, and coordination
of action with musical events. This article focusses on four main questions. How do metrical

patterns form? How do structures reorganize in response to structural change? How do structures
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accommodate the temporal fluctuations found in music performance? How do metrical structures

support communication between performer and listener?

[I: A Model of Meter Perception

Let us begin by stating some background assumptions. Thekgtimmwill be used to refer
to the pattern of timing and accentuation of a complex sequence, as shown in Fiduweeht
means the phenomenal accent (cf. Lerdahl & Jackendoff, 1983) associated with each sounded
event. Phenomenal accent arises through a combination of acoustic variables including pitch,
loudness, timbre, and duration. In the study of rhythm perception and performance, a conceptual
division is usually made between meter, a perceived temporal-accentual structure, and grouping,
the segmentation of the auditory event into meaningful structural units, such as phrases. Relative
timing and phenomenal accent both provide perceptual cues to both meter and grouping. Figure 1

illustrates both forms of rhythm organization.

Insert Figure 1 about here.

The basic element of meter is a beat, a series of perceived pulses marking subjectively equal
units of time. Perceived beat is an inference from the acoustic stimulus (Cooper & Meyer, 1960;
Lerdahl & Jackendoff, 1983), and functions as an expectation for when events are likely to occur
in the future (cf. Large & Kolen, 1994). Meter is a more complex temporal accent scheme that
describes the perception of regularly alternating strong and weak beats, sometimes described as the
simultaneous perception of beats on multiple time scales (Lerdahl & Jackendoff, 1983; Yeston,
1976). Temporal locations at which beats of several levels coincide are tetroagbeats, those
at which few levels coincide angeak Meter is a complex form of temporal expectation: Acoustic
events are more strongly expected at strong beats, and less expected on weak beats (cf. Desain,
1992; Large & Jones, 1999). Grouping structure refers to the way the acoustic stream is parsed into
meaningful structural units (Lerdahl & Jackendoff, 1983), as notated above the musical staff of

Figure 1. A significant body of research has investigated cues to grouping, which include global
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pattern structure, local patterns of timing and accent, and performance cues (see e.g. Garner &

Gottwald, 1968; Povel, & Okkerman, 1981; Palmer, 1997).

Formation and Stability of Metrical Structures

According to Cooper & Meyer (1960) a perception of beat generally arises in response to a
periodicity present in the musical signal, but it is stable in the sense that once perceived it may con-
tinue even when the periodicity is interrupted in some way. To model this phenonssibsays-
tained oscillationis proposed as the basic model of musical beat. A self-sustained oscillation is
autonomous in the sense that, once activated, it can persist, even after stimulation ceases or changes
in significant ways. However, it also has the property that it entrains to incoming rhythmic signals.
The simplest mathematical form for self-sustained oscillation is calleddpé oscillator(Arrow-

smith & Place, 1990), which can be written as a differential equation in the complex vaz(dple
Z=o0z+iwz—222 (1)

Here the dot operator denotes the differentiation with respect to timeZe=gdz/ dt a ), isan
energy parameter, and is the eigenfrequency (inverse of period) of the oscillator. The behavior
of this system is best understood by transforming to polar coordinates using the identity
z(t) = r(t)expi@(t), and separating real and imaginary parts. The transformation yields a system

of two differential equations, describing the time evolution of amplitude and phase respectively.
I =r(a-r2) (1a)

=W (1b)

The transformation reveals that the amplitude and phase of the Hopf oscillator are independent.
Thus, by setting’ to zero, we can find the stable states of the system. Such an analysis reveals
two steady state behaviors; the value of the energy parameter determines which behavior is
observed, as shown in the Figure 2. Wiers less than zero (energy is being removed from the
system), the system has a stable fixed poinbhwit 0, and thesystem behaves as a damped oscil-

lator. For parameter values greater than zero (energy is being added into the system), a stable limit
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cycle develops; the system generates a self-sustained oscillation. Thep0istcalled abifur-
cation point It is the point at with the behavior changes qualitatively from damped oscillation to

self-sustained oscillation. This type of bifurcation is called a Hopf bifurcation.

Insert Figure 2 about here.

Representation of metrical structure can be modeled by a network of oscillators with different
periods, competing for activation through mutual inhibition. Oscillations that are most consonant
with the input (see Large, 2000a) tend to deactivate those that do a poorer job of predicting the
incoming rhythm. In response to a rhythmic pattern a few oscillations achieve stable activation:
those that best summarize temporal structure of the stimulus. This pattern-formation process is
captured with the addition of an interaction term into Equation 1:

in - anzn+iwnzn—zn|2n|2— Z anzn|zm|2 @)
m#Zn

wherey is an interaction matrixy,,,=0 . As above, transformation to polar coordinates shows
that in Equation 2 amplitude and phase are independent.

r.n = rn(an_rr%)_ z ymnrnrrzn (2a)

m#n
Py = W, (2b)

As shown in Figure 3A, activation of one oscillator effectively moves the bifurcation point of the
other oscillator. The matrix specifies the new activation thresholds relative to the energy param-
eters of competing oscillators. For example, in a two-oscillator network, when one oscillation is
active, the second oscillator's energy must exceed a certain proportion of the active oscillator’s
energy in order for it to activate; the required proportion is given by the strength of the inhibition
parameter. Figure 3B shows the four metrical patterns that can arise in such a network, and the

conditions — in terms of relative parameter values — under which each exists and is stable.

Insert Figure 3 about here.
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The pattern forming dynamics described by Equation 2 provides a number of interesting
properties. First, it describes the formation of metrical structures. The simple analysis provided for
the two oscillator network extends in a straightforward way to any number of oscillators, and it is
possible to tie the parameters to the rhythmic stimulus in such a way that distinct metrical
representations arise within the first few beats of a musical rhythm (Large, 2000a). It also makes
predictions about the stability of metrical representations. Once a metrical pattern forms in the
network it tends to persist, to remain stable even when a rhythmic pattern comes into conflict with
its predictions. Among other things, this provides a basis for understanding phenomena such as
syncopation. Given rhythmic contradiction that is strong or consistent enough, the network may
also reorganize its metrical representation.

The formation and stability of patterns in such a system are best studied under conditions of
multistability Referring back to Figure 3B, note that the stability conditions for patterns 2 and 3
are not mutually exclusive The network cannot occupy both states simultaneously, however. This
situation is called bistability, and in a larger network, multistable states are also possible. In its most
general form, the theory predicts that certain rhythmic patterns can support more than one stable
metrical representation (Large, 2000b). An observable consequence of multistalbyistasesis
the persistence of a structural representation despite stimulus parameters that would normally favor
an alternative structural interpretation. In section I, evidence regarding the formation and stability

of metrical representations is reviewed.

Synchronization and Communication

How does the rhythmic stimulus influence the network? Details of how musical rhythms are
input are discussed in (Large, 2000a). In this article, a simplified model in considered, one that
captures the phase dynamics of a single active oscillation in the network, driven by an external
rhythm (Large & Kolen, 1994). This type of discrete time dynamical model is called a phase
attractive circle map (cf. Kelso, deGuzman, & Holroyd, 1990). The series of phases produced by

this circle map represents the phases of the oscillation at which auditory events occur. From a
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musical point of view, the primary feature of interest is that the oscillatig&se coupletb the

stimulus, such that it synchronizes with certain stimulus events in the external signal.

101;
@1 =Gt Tl_r](pxiF((pl’ K) (mod 5 51) (3

Equation 3 maps event onset times onto the phase of the internal oscillation as depicted in
Figure 5, wherg is the period of the oscillation d@d; is theitM inter-onset interval (.1t )

of the auditory event sequence. Incorporation of stimulus IOI's enables the model to predict
responses to any rhythmic pattern (Large & Kolen, 1994). The phase coupling term,
—r](pXiF((p,, K), models entrainment of the oscillator with the signal, whqr@ is coupling
strength, X; is the amplitude of tHé event, andF (@, k) is a coupling function (Large &
Kolen, 1994; Large & Palmer, 2001). This model can maintain synchrony with a musical rhythm

even in the presence of small random timing fluctuations.

Insert Figure 4 about here.

Phase coupling alone, however, is not sufficient to model entrainment in the presence of large,
systematic timing fluctuations, such as musical rubato. If the tempo of a musical performance
changes too much, for example, the oscillator will simply lose synchrony. To maintain synchrony
listeners must track tempo fluctuations. To explain this, it is necessary to assume that the period of

the internal oscillation adapts to a changing stimulus tempo (Large & Kolen, 1994):
Piv1 = pi"'pianiF(%K) (4)

Equation 4 serves as a simplified model of period adaptation, which corresponds to smooth move-
ment of peak activations in the oscillator network of Equation 2 (cf. Figure 5A, below).

Once the musical stimulus enters the picture, it is possible to make predictions about the real-
time tracking of auditory events. This model predicts synchronization with temporally complex
stimuli and flexible adaptation to natural temporal fluctuations of the type found in performed

music. Specific patterns of phase and period adaptation, should be observed in response to temporal
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stimulus perturbations. For simple metronomic stimuli, these tracking predictions are similar to
those of linear error correction models (e.g Vorberg & Wing, 1996). However, the oscillator
network model is more general. It includes nonlinear phase correction, models adaptation of period
as well as phase, and accommodates rhythmically complex sequences. Finally, the model makes
predictions about the perception of expressive timing. Transient tempo fluctuations observed in
speech and musical performance (e.g. rate changes, intonation) communicate structure, intention,
and affect. The theory models communication by assuming that listeners recognize communicative
temporal gestures as deviations from temporal expectations embodied in attentional structures. In
section lll, | describe experiments that evaluate both aspects of the model’s predictions about

responses to rhythmic patterns.

[ll: Some Examples

In the previous section, a model was introduced that made a number of predictions. These
included predictions about the formation of temporally structured representations, the persistence
or stability of representations, real-time temporal tracking of stimulus fluctuations, and musical
communication based on expressive performance timing. In general, these predictions can be
evaluated with many different types of stimuli. Some of the most interesting involve perceiving and
attending to natural, performed musical rhythms. Thus, one approach to understanding these issues
is to investigate perception of music performances directly. In addition, using simpler sequences,
one can make more controlled observations regarding, for example, temporal tracking. In this
section | describe how both types of stimuli are used to evaluate the predictions of the nonlinear

pattern formation approach to the perception of metrical structure.

Formation of Metrical Structures

One way to assess the formation of metrical structures is to ask participants to explicitly
describe their metrical perceptions. In one such study, Snyder and Krumhansl (2000) investigated

the nature of mental pulse-finding using a synchronization tapping task. They presented musicians
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with excerpts of eight ragtime piano pieces, and asked them to tap the most comfortable pulse of
each excerpt on a piano keyboard. In Snyder and Krumhansl's study, the musical excerpts were
generated by computer so that the timing of the individual events was metronomically precise.
The pieces were played to participants via MIDI, using a digitally sampled piano timbre. To con-
trol different types of pulse-finding cues that were available, four versions of each piece were gen-
erated. First, full versions (both LH and RH parts) and right-hand only (RH) versions were
created. The elimination of the left hand part created a version of the music that was more synco-
pated, and potentially more metrically confusing than the full version, because fewer events
occurred on the downbeats. Next, based upon each of these two versions, two additional stimuli
were created from which non-temporal cues were eliminated. In these, all pitches were changed to
middle C, creating monotonic versions of the excerpts. The elimination of pitch information cre-
ated versions of the music in which pitch cues could not be used to resolve metrical ambiguity,
thus these versions served as a gauge of the role of pitch information in structure formation.

To test the model, Snyder & Krumhansl’s MIDI recordings were played on a Kawai 950
digital piano, and the acoustic signal was passed through a simple auditory model, approximating
processing in the earliest stages of the auditory system: frequency filtering by the cochlea,
mechanical to neural transduction at the level of the primary afferents, and onset responses, which
can be observed as early as the cochlear nucleus (cf. Scheirer, 1998; Todd, 1994). This process
produced a rhythmic signal comprised of event onsets. The onsets drove the network through a
multiplicative coupling that tied the energy parameterof each oscillation to its success in
predicting upcoming events in the rhythm (Large, 2000a). Using this approach, model predictions
were compared with the results of Snyder & Krumhansl's (2000) experiment.

The network makes several predictions, two of which are shown in Figure 5. First, a pattern
of oscillations arises in response to the musical rhythm, forming a dynamic representation of
metrical structure. This can be seen in Panel A, which summarizes network performance for the
entire excerpt as average amplitude. Four peaks in network amplitude are evident, corresponding
to oscillations at the 1/16, 1/8, 1/4, and 1/2 note metrical levels. This is one of many different

metrical patterns that can be stabilized within this network. The spectral properties of the rhythm
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in conjunction with the inhibitory network interactions gave rise to this four-leveled, duple metrical

structure.

Insert Figure 5 about here.

But amplitude is only half of the story, the sustained oscillations also synchronize to the
rhythm, predicting phase (Panel B). Snyder & Krumhans| measured the phase — the location within
the measure — at which people tapped along with the excerpts, i.e. whether they tapped in the
downbeat, upbeat, neither (at some other metrical location), or in an aperiodic fashion. The
musicians almost always tapped on the downbeat for the full pitched versions, but tapping
performance broke down as information was removed from the stimulus. To model this, the highest
amplitude oscillation (the 1/4 note level) was used to predict the period at which people would tap
along with the rhythm. The network predicted tapping phase well for natural musical signals, and
although as a whole it produced taps less often on the downbeat than the musicians, the network
produced a similar pattern of breakdowns as accompaniment (LH) and pitch information was
removed from the stimulus.

Overall, when stimulated with rhythmic input, the pattern-forming dynamical system of Eq
2 gave rise to metrically structured patterns of oscillation. It provided reasonable predictions of
human performance for natural music, and network performance deteriorated similarly to human
performance as stimulus information is degraded. For both the model and for the musicians,
increased syncopation was more disruptive to synchronization than lack of pitch information.
Thus, this test suggests that the nonlinear pattern formation approach may be on the right track.
However, these stimuli did not contain any temporal fluctuation, thus predictions about tempo
tracking cannot be assessed. Furthermore, the musicians tapped at only one level metrical level,
leaving the network’s predictions about multiple structural levels untested. Using other tech-

niques, however, it is possible to gauge other aspects of the network’s predictions.
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Stability of Metrical Structures

How can we assess which of several possible metrical interpretations is heard for a given
rhythm? To ask this question, it is necessary to identify a task that directly measures the formation
of multi-leveled structures. Evidence suggests that the categorization of rhythmic patterns provides
such a task, one that taps directly into listeners’ dynamic representations of metrical structure.
Clarke (1987) demonstrated that ambiguous temporal ratios (between 1:1 and 2:1) were more
likely to be categorized as 2:1 in the context of triple meter, whereas these same ratios were more
likely to be categorized as 1:1 in the context of duple meter. Clarke interpreted his results in terms
of two processes operating in rhythm perception. One places temporal intervals into categories
depending on the prevailing metrical context, the other interprets deviations from categorical
precision as musically expressive gestures.

Furthermore, in dynamical systems terms, Clarke’s data provide eviderpesteiresisn
meter perception, the persistence of a percept (e.g. a duple meter) despite a change in the stimulus
that favors an alternative pattern (e.g. atriple meter). As discussed above (see Figure 3B) hysteresis
occurs in situations of multistability. Multistability and hysteresis are fundamental predictions of
the nonlinear pattern formation theory, thus tests of these predictions provide key assessments of
this approach. In one study, a rhythmic pattern composed of three event onsets was gradually
changed such that its metrical interpretation would be altered (Large, 2000lmci®asingtrials,

a 1:1 time interval ratio, implying a duple metrical structure, was gradually changed to a 2:1 ratio,
favoring a triple metrical structure (Figure 6A); alecreasingrials, the 2:1 ratio gradually
changed to a 1:1 ratio. Participants were asked to categorize the rhythmic pattern atupitbher

triple. Because it was possible that some intermediate patterns would be heard as neither duple nor
triple, a third response categomyeither was included. Also, the potential for confounding
perceptual hysteresis with response hysteresis was minimized using the modified method of limits
procedure (Hock, Schoner, & Kelso, 1993). Changes occurred within the context of a rhythmic
sequence, such that the model predicted that a two-leveled metrical structure would be perceived,

as shown in Figure 6B (ancreasingtrial is pictured).



Periodicity and Pattern 13

Insert Figure 6 about here.

To produce model predictions, it was assumed that when two oscillations were active, one
with a period corresponding to the base interval, and the second with one-half the period of the base
interval, the model (i.e. Equation 2) responded “duple”. When the second oscillation had one-third
the period of the base interval, the model responded “triple”. When only one oscillation —
corresponding to the base interval — was active, the model responded “neither”. All three
oscillations competed with one another. Figure 6C compares representative predictions of the
model with experimental results. Here, the perceptual boundary between the categories “duple”
and “not duple” are compared in the decreasing context (subject was asked to respond as soon as
pattern was clearly duple) and tirecreasingcontext (subject was asked to respond as soon as
pattern became anything other than clearly duple) and for one subject. For both the model and the
subject hysteresis was observed. i@ereasingtrials, both persisted in the perception of “duple”
for quite some time; omlecreasingrials both persisted in judgements of “not duple” until the
stimulus is very nearly true 1:1. This result provides strong evidence of multistability, supporting
the nonlinear pattern formation approach.

The results of this study are consistent with the general prediction of hysteresis in meter
perception, and specific patterns of results can be used to fit model parameters for each subject.
Other issues remain to be investigated, however. For one, studies such as this one simply assume
that categorization is based on an underlying representation of metrical structure. In principle,
however, this assumption could itself be tested. Additionally, if some rhythms truly do possess
bistable metrical interpretations, then even more dramatic effects should be observed in more
complex musical sequences. Finally, this study addressed only the first of the two processes
proposed by Clarke (1987), categorization of an imperfect temporal interval according to a stable
metrical framework. But what happens when the tempo of a sequence changes? How do people
track the temporally fluctuating stimulus? How do temporal fluctuations communicate musical

expression?
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Tracking Temporal Fluctuations

Real-time tracking is most directly measured using tasks such as synchronization tapping, in
which people are required to coordinate bodily movements with auditory patterns. The ability to
coordinate motor behaviors with auditory stimuli has been widely studied (e.g. Bartlett & Bartlett,
1959; Dunlap, 1910; Fraisse, 1956 Kohlers & Brewster, 1985; Michon, 1967; Stevens, 1886; Vos,
Mates, & van Kruysbergen, 1994; Woodrow, 1932). Most studies have investigated synchroniza-
tion to simple, structurally isochronous sequences. These have uncovered several robust behav-
ioral phenomena, and various models have been proposed to account for these findings, which
include rate dependence, anticipation bias, patterns of variability, compensation for phase pertur-
bations, and learning (e.g. Chen, Ding, & Kelso, 1997; Hary & Moore, 1987; Kelso, DelColle, &
Schdner, 1990; Mates, Radil, & Poppel, 1992; Pressing & Jolley-Rogers, 1997; Semjen, Vorberg,
& Schulze, 1998; Vorberg & Wing, 1996, Zanzone & Kelso, 1992). However, such models have
yet to be convincingly extended to more complex and naturalistic stimuli, such as music. Even the
simplest musical performance presents considerably more complexity than the ticks of an audi-
tory metronome. And while a great deal is known about synchronization with simple acoustic
sequences, relatively little is known about how people accomplish the similar feat of synchroniza-
tion with more complex auditory stimuli.

In one study, Large, Fink, & Kelso (2001) addressed issues of synchronization to rhythms
that approached musical complexity. In two experiments, synchronization to simple and more
complex rhythmic sequences was investigated. Their first experiment examined responses to phase
and tempo perturbations within simple, structurally isochronous sequences, presented at different
base rates. Phase and tempo perturbations were embedded, at random intervals, in otherwise
isochronous tone sequences. Subjects were asked to synchronize finger taps to these sequences.
Figure 7 shows model predictions (top) and representative data for a single subject (bottom)
responding to a phase perturbation (left) and a tempo perturbation (right), where perfect synchrony
isindicatedbyp = 0 ,anearlytapby<0 andalate tapgosy O . The overshoot in the response
to the phase perturbation combined with the smoother relaxation profile for the tempo perturbation

are evidence for period adaptation, and are nicely predicted by the model (Equations 3 & 4)
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Another experiment investigated responses to similar perturbations embedded within more
complex, metrically structured sequences; participants were explicitly instructed to synchronize at
different metrical levels (i.e. tap at different rates to the same rhythmic patterns) on different trials.
Large, et. al. (2001) found evidence that people can synchronize with unpredictable, metrically
structured rhythms at different metrical levels, with qualitatively different patterns of
synchronization seen at higher versus lower levels of metrical structure. Furthermore, intrinsic
tapping frequency adapts in response to temporal perturbations in these complex rhythms, and

synchronization at each tapping level reflects information from other metrical levels.

Insert Figure 7 about here.

This study provided evidence for a dynamic and flexible internal representation of the
sequence’s metrical structure. The unpredictability of the patterns in Experiment 2 rules out the
possibility that coordination of action depended upon learning of specific rhythmic patterns (e.g.
Vorberg & Hambuch, 1984; Pressing, 1999). Furthermore, successful recovery from phase and
tempo perturbations in unpredictable rhythms disconfirms the hypothesis that temporal tracking is
based solely upon prior learning of specific sequences of auditory events (cf. Cottrell, Nguyen, &
Tsung, 1993). Taken together with the observation that musicians and non musicians performed
equivalently, the basic finding points to a natural, inherently rhythmic faculty, that is not based on
learning of specific event sequences, rhythmic patterns, or response strategies. But what about

perception: how do temporal fluctuations function in musical communication?

Musical Communication

The temporal fluctuations observed in naturally performed music are not arbitrary temporal
perturbations as in the above study. Rather, the transient fluctuations observed in musical
performance communicate structure, intention, and affect. Performers use temporal fluctuations to
communicate musical interpretation, including interpretations of phrase structure, melody, and
meter (for a recent review, see Palmer, 1997). Indeed violation of musical expectations, in general,

is thought to be critical in the communication of emotion and meaning in music (e.g. Meyer, 1956;
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Narmour, 1990). Furthermore, certain aspects of temporal structure have been linked to
communication of emotion and affect, even across performers and listeners of different musical
cultures (Balkwill & Thompson, 1999).

Deviations from a regular beat or pulse in music performance, sometimes called rubato, are
often largest near phrase boundaries. One study of music performance examined the effects of
phrase structure on temporal fluctuations in piano performances (Palmer & van de Sande, 1995).
In this study, performances of polyphonic music by Bach (two- and three-part inventions) which
contained multiple voices were collected on a computer-monitored acoustic piano. Pianists
performed the same musical pieces in terms of three different phrase structures as marked in
different versions of the music notation; in a control condition, there were no marked phrase
boundaries. Palmer & van de Sande (1995) found that performers reliably used rubato at intended
phrase boundaries.

This result provides two challenges to the oscillator model. First, beat tracking in the
presence of rubato provides a test of the model’s ability to adapt to a changing tempo in a real
performance. Second, the model’'s sensitivity to deviations from its temporal expectations can be
compared with performers’ structural intentions to further test how the temporal fluctuations in
music performance may be informative for listeners. To do this, the model must both categorize
temporal intervals in the presence of musical rubato, while at the same time registering deviations
from expected timing.

Phrase boundary detection was accomplished using an extension of the model (Equations 3
& 4) described by (Large & Jones, 1999). Events occurring at expected times are processed more
accurately and efficiently than events occurring at less expected times (Large & Jones, 1999). This
is captured as a concentration of attentional resources about expected time points called an
attentional pulse. A parameter called attentional focus indexes the concentration of expectancy
about the expected time poinp(= 0 ), and focus adapts dynamically based upon the accuracy of
the oscillator’s predictions. The salience of a temporal deviation (for example, an event performed

later than expected) increases not only with the size of the deviation but also with the temporal
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regularity of the performance. Large & Jones successfully used this framework to predict
performance in time discrimination tasks.

In an application to musical performance (Large & Palmer, 2001), a two-oscillator model first
tracked the fluctuating temporal structure, categorizing event onsets according the meter, and then
determined the probability that individual events marked phrase boundaries as shown in Figure 7.
The model performed remarkably well in finding intended phrase boundaries, predicting perceived

phrasing, thus modeling communication between performer and listener.

Insert Figure 8 about here.

IV: Conclusions and Future Directions

The theoretical approach described in this article model the perception of metrical structure
as a nonlinear pattern formation process that can be driven by a rhythmic stimulus. Many features
of the patterns that form in the network described here match those that were reported by
musicians, at least those that were tested in the case of ragtime piano music. Stability properties of
perceived metrical structar— a measure of independence from the rhythmic signal that drove
formation of the original pattern, the tendency to remain stable in the face of rhythmic conflict —
are captured in this framework by nonlinearities in the pattern forming system. These same
properties allow the structure to yield when rhythmic conflict becomes strong or consistent enough,
as seen in the categorization study. In any such system, the basic signature of a nonlinear
mechanism is hysteresis — persistence of a percept despite a change in the stimulus that favors the
alternative percept. Hysteresis was reported here in one experiment, and musical intuition suggests
that many more interesting cases of rhythmic multistability remain to be investigated in the
laboratory.

Rubato also provides an interesting demonstration of the flexibility of metrical percepts. As
Clarke (1987) observed, people possess the ability not only to categorize imperfect temporal
intervals, following the meter despite tempo changes, but they also respond meaningfully to devi-

ations from temporal expectations, understanding the meaning of musically expressive temporal
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gestures. The theory described here accommodates rubato by postulating a period adaptation
mechanism, while at the same time capturing the response to expressive timing using a simple
time discrimination model. The period adaptation model accurately predicted the response to arti-
ficial tempo perturbations, and also fared well in tracking temporal fluctuations in expressively
timed musical performances. In the latter, the model was also able to reliably detect intended
phrase boundaries, capturing one aspect of musical communication between performer and lis-
tener.

Although aspects of this approach seem muscially intuitive, and several predictions stand up
to empirical scrutiny, the models presented in this article are merely steps along the path to a more
complete understanding of rhythm perception. The mathematical models described here are
formulated at a level that captures the phenomenology of meter perception directly, without
modeling the details of the neural structures that give rise to this experience. The Hopf oscillator,
for example, is a normal form dynamical system, a mathematical abstraction that discards the
details of particular physical systems, succinctly capturing the basic properties that are shared
among a family of more complex differential equations. Normal form dynamical systems are, in a
rather specific mathematical sense, the simplest systems that capture the basic phenomenon under
study (Arrowsmith & Place, 1990). Thus the pattern forming system of Equation 2 is, in a sense,
the simplest dynamical system that will exhibit the properties that we have exploited here to model
meter perception.

There are two main advantages to modeling at the phenomenological level. The model
systems that are developed are susceptible to mathematical analysis, and predictions are made at a
level that is appropriate to behavioral investigation. Thus, for example, the predictions of hysteresis
in meter perception (Figure 3B) can be worked out analytically, such that behavioral data can be
used to fit model parameters. The circle map model (Equations 3 & 4) is a further simplification of
the normal form model, taking external input into account (see Large, 2001). The discrete-time
phase equation is a straightforward discretization of the continuous phase dynamics, and period

adaptation replaces amplitude dynamics with the assumption that the period of each network
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oscillation can adapt smoothly in response to tempo changes. These forms of the model support
numerical analysis (e.g. Large & Kolen, 1994, deGuzman & Kelso, 1991), and they are particularly
convenient for modeling synchronization performance, time discrimination, and the perception of
expressive timing.

Future modeling work should proceed along two fronts. The first concerns the use of
information that goes beyond event onsets. The current models rely only on onset timing,
amplitude, and frequency information, which is recoverable from acoustic recordings, and has
been used as input to continuous-time models such as Large (2001) of Scheirer (1998). However,
such models do not make use of all of the information relevant to human meter perception, which
includes information about pitch, melody, and harmony. Such information is not yet fully
resolvable from acoustic recordings, thus other avenues will have to be investigated. Here, the
discrete-time formulation offers some advantages over its continuous-time cousin, for example the
ability to work directly with MIDI recordings. Modeling using MIDI signals could take advantage
of information that is available to the auditory system, without first solving the equally difficult
problem of how the auditory system resolves such information For example, Toiviainen (1998),
uses MIDI information to drive a continuous-time model that takes event duration into account.

Second, theories of meter perception should move toward the development of more neurally
realistic models. Single neuron Hogkin-Huxley type equations are currently being investigated for
modeling of interval selective auditory neurons (e.g. Large & Crawford, 2001; Crawford, 1997).
The disadvantage of such models is that their analytical and computational complexity makes
predictions regarding high-level phenomena such as meter perception difficult to directly evaluate.
Recently, Eck (2000) has described a model of meter perception based on a single neuron model
known as the FitzHugh-Nagumo oscillator. The FitzHugh-Nagumo oscillator is essentially a
mathematical simplification of the Hogkin-Huxley model, one that is more tractable, both
analytically and computationally. Other possibilities for neural modeling include so-called neural

field equations (e.g. Jirsa & Haken, 1996; Amari, 1977), which attempt to capture population-level
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dynamics of neural ensembles. Such model will become especially relevant as neural imaging data
becomes available for musical rhythm perception (cf. Mayville, et. al., 1999; Meaux, 2000).

Another promising area in the study of rhythm perception is, of course, is language. Similar
descriptions of meter and grouping have been advanced by linguists and music theorists (e.g.
Hayes, 1984; Lerdahl & Jackendoff, 1983; Liberman, 1975; Selkirk, 1984; Yeston, 1976), where
direct analogies are often made between the rhythmic organization of music and speech. Although
simple approaches to timing in language (e.g. “stress” versus “syllable” timing; Abercrombie,
1967; Pike, 1945) have not received strong empirical support (Hoequist, 1983; Roach, 1982),
timing in music is significantly more complex and flexible that is commonly assumed. In fact, it is
remarkable that listeners are able to perceive durational categories corresponding to the eighth-
notes, quarter-notes, half-notes, and so forth, of musical notation because the actual durations
measured in music performance deviate greatly from notated categorical durations (Clarke, 1987;
Longuet-Higgins & Lee, 1982). Temporal fluctuation is commonly observed in all auditory
communication,t{me-warpingin speechexpressive timingy music), and temporal perturbations
are not noise. Rather they communicate information about things like grouping in both speech and
music (Lehiste, 1977; Price et. al., 1991; Palmer, 1989; Shaffer, Clarke & Todd, 1985). Overall,
transient stimulus fluctuations (temporal fluctuation, phenomenal accentuation) are quite important
in auditory communication, distinguishing pragmatic categories of an utterance (e.g. statement vs.
guestion), signalling focus, marking the boundaries of structural units, and communicating affect.
Recent studies have already begun to investigate the relevance of dynamical models for linguistic
rhythm (e.g. Cummins & Port, 1999).

To sum up, from the listener’s point of view, meter is more than an objective analysis of a
rhythmic input signal. The perception of metrical structure is a stable dynamic pattern that under-
lies a dynamic attentional strategy. Attention, in this view, is not a filter that protects a limited
capacity information processing mechanism (cf. Broadbent, 1958), rather is a process of selection
for action (cf. Allport, 1989). Dynamic attending, as conceived here, aids in selection of tempo-

rally coherent auditory events for interaction, whether it be participating in an improvisation,
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coordinating toe-taps with a drummer, taking turns in a conversation, or simply focussing on a
piano accompaniment for more careful scrutiny. The theory explains how people maintain a stable
attentional focus over temporally extended events while flexibly adapting to transient temporal
fluctuations. It provides mathematical models of dynamic structural representation, meaningfully
extending previous approaches to auditory attending. It makes predictions about general proper-
ties of the neural correlates of auditory representation, attention, and communication. Finally, it
applies to complex, temporally structured event sequences, explaining how people respond to the

auditory complexity of the real world.
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Reference Notes

For example, whert; = a, = 1 ang, ; =y, , =15 , pattern 2 and pattern 3 are

both stable.
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Figure Captions

Figure 1. Opening Aria from Bach’s Goldberg Variations. The metrical structure (below

staff) is triple: strong-weak-weak. The grouping structure (above staff) marks two phrases.

Figure 2. A Hopf oscillator models activation of a self-sustained oscillation (Equation 1).

For parameter values less than zero, the system generates a damped oscillation; for values
greater than zero a stable limit cycle develops: the system generates a self-sustained
oscillation.a=0 is the bifurcation point, the parameter value at with the behavior changes

qualitatively.

Figure 3. Competition (Equation 2) in a two-oscillator network. (A) Competition from

oscillator 2 moves the bifurcation point of oscillator 1. (B) Metrical patterns and associated
stability conditions for the two-oscillator network. Four metrical patterns can arise this
simple network. The stability condition for patterns 2 and 3 are not mutually exclusive, thus

this parameter region is bistable.

Figure 4. Relative phase and the circle map. Tintgjs mapped onto phasey , by
Equation 3 such that the expected onset time, t, is transformed to an expected phase
¢ = 0. Circle maps work in relative phase directly, mapping points on the circle to new

points on the circled, - @,,, ). Adapted from (Large & Jones, 1999).

Figure 5. (A) A temporal pattern of oscillations arises in response to a musical rhythm,
dynamically representing its meter: a binary structure with 4 metrical levels (amplitude
peaks are shown). The most prominent pulse level (the highest peak) predicts the period at
which people will tap along with the rhythm. (B) The oscillators also synchronize to the
rhythm, predicting the phase at which people will tap, and the patterns of phase instability
that occur as pitch information is removed (Monotonic) and as rhythmic complexity is

increased (RH). Data from Snyder & Krumhansl| (2000).
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Figure 6. The categorization experiment: stimuli and results. (A) 1:1 ratios imply duple
metrical structure, 2:1 ratios imply triple structure. Rhythmic patterns were gradually
changed from duple to triple, and subjects were asked to categorize tturmplggriple or
neither (B) An increasing trial: the duple rhythmic pattern gradually changes toward a
triple rhythmic pattern. (C) The model predicts hysteresis in the boundary betiupén

andnot duple Data from one subject also shows hysteresis at this boundary.

Figure 7. The model (Equations 3 & 4) predicts motor tracking responses to phase and
tempo perturbations in isochronous sequences. Both model and data show overshoot in
response to phase perturbations, and smoother relaxation from tempo perturbations,

indicating an internal period correction process.

Figure 8. (A) Categorization of note events (dark = strong beat, light = weak beat), and (B)

probability of lateness (see Figure 4) relative to categories. The intended phrasing
(instructions to performer) is shown above. The network predicts perceived phrasing,
modeling communication between performer and listener (Adapted from Large & Palmer,

2001).
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