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Abstract

How do people synchronize movement patterns with music? Most likely, when people listen
to a musical rhythm, they perceive a beat and a metrical structure in the rhythm, and these
perceived patterns enable coordination with the music. Here, a model of meter perception is
proposed in which a musical stimulus provides input to a pattern-forming dynamical system.
Under rhythmic stimulation, the system undergoes bifurcations that correspond to the birth of
self-sustained oscillations and the formation of temporally structured patterns of oscillations.
The resulting patterns dynamically embody the perception of beat and meter, and they are
stable in the sense that they can persist in the in the face of rhythmic conflict. The performance
of the model is compared with the results of a recent beat induction study (J. Snyder, C.L.
Krumhansl, Tapping to ragtime: Cues to pulse-finding. Music Perception, 2000 (under re-
view)) in which musicians tapped along with musical rhythms. The network closely matched
human performance for natural musical signals and showed a similar pattern of breakdowns
as the input degraded. The theoretical implications of these findings are considered. © 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

Perhaps the most natural response to music, one that most of us observe or
take part in every day, is to synchronize our bodily movements with musical
rhythms. We clap our hands, snap our fingers, stomp our feet, sway, dance or
in some other way coordinate our movements with the temporal structure
that we perceive in musical events. The organic, effortless, and often com-
pletely spontaneous nature of musical synchronization suggests a deep rela-
tionship between movement and music. Yet it also masks a phenomenon of
extraordinary complexity. How do we synchronize our movements to music?

Many investigators have studied the ability to synchronize motor behavior
with auditory sequences using simple isochronous and/or tempo modulated
tone sequences as stimuli and a number of models have been proposed to
explain the behavioral findings, including patterns of variability, compensa-
tion for temporal stimulus perturbations, and a general anticipation bias
(e.g., Chen, Ding & Kelso, 1997; Hary & Moore, 1987; Kelso, DelColle &
Schoner, 1990; Mates, Radil & Poppel, 1992; Pressing & Jolley-Rogers, 1997;
Semjen, Vorberg & Schulze, 1998; Vorberg & Wing, 1996). In some ways,
these studies are relevant to the question at hand, since the simplest example
form of musical coordination is to tap our fingers, more or less isochro-
nously, with the beat of the music. Yet, even relatively simple music is far
more elaborate than the monotonous ticks of an auditory metronome; one
question that such studies do not address is that of stimulus complexity.
Thus, while there is a great deal of data available on synchronization with
simple acoustic signals, relatively little is known about how people accom-
plish the similar feat of synchronization with more complex auditory stimuli
such as music.

How do people tap along with music? Most likely, when we listen to music
we hear a beat — a psychological, more-or-less isochronous, pulse train — that
provides the stimulus for synchronization. Although this proposal is intu-
itively appealing, the subtlety of the rhythmic and tonal materials of most
music makes this suggestion more difficult to assess than it might appear at
first blush. Except in the case of rhythmically simple music, it is rarely clear
from a straightforward analysis of the acoustic signal where ‘““the beat” is
located, even though it may be quite obvious upon auditory presentation of
the musical material. This has led investigators in the field of music per-
ception to propose various theoretical and computational approaches to beat
perception (Desain & Honing, 1991; Brown, 1993; Essens & Povel, 1985;
Gasser, Eck & Port, 1999; Goto & Muraoka, 1998; Large & Kolen, 1994;
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Large & Jones, 1999; Large & Palmer, 2000; Longuet-Higgins & Lee, 1982;
Parncutt, 1994; Scarborough, Miller & Jones, 1992; Scheirer, 1998; Steed-
man, 1978; Todd, Lee & O’Boyle, 1999; Toiviainen, 1998; Dannenberg &
Mont-Reynaud, 1987; Van Noorden & Moelants, 1999; Vercoe & Puckette,
1985; Vos, Van Dijk & Schomaker, 1994). These models, known variously as
beat induction, pulse finding, or beat tracking models, attempt to predict the
period and phase of the psychological pulse series (the beat) of a complex
acoustical stimulus on a moment-to-moment basis. While each has shed some
light upon the issues at hand, none to date has been entirely successful in
capturing the robustness of human beat perception.

One problem for models of beat induction is that there is still relatively
little empirical data available. However, recently a few investigators have
studied tapping to music (Jones & Pfordresher, 1997; Repp, 1999a,b.c;
Scheirer, 1998; Snyder & Krumhansl, 2000; Van Noorden & Moelants, 1999)
while several others have studied the effects of stimulus complexity in tapping
and time perception (e.g. Deutsch, 1983; Jones & Yee, 1997; Large & Jones,
1999; Peper, Beek & Van Wieringen, 1995; Povel & Essens, 1985; Pressing,
1998, 1999). Thus, some preliminary findings have been established. People
can find and track the beat of music and other rhythmically rich patterns.
People exhibit preferences for temporal structures that embody simple time
ratios (e.g. 2:1, 3:1, 3:2). Non-temporal cues such as pitch, loudness and
harmony, interact with temporal cues in beat finding. People demonstrate
preferred absolute tempi around an inter-beat-interval (IBI) of approxi-
mately 600 ms, in both perception and production.

Building upon earlier theoretical work (Jones, 1976; Large & Kolen, 1994;
Large & Jones, 1999), I present an approach to beat induction that takes into
account the empirical results discussed above. The basic premise of this ap-
proach is that the stability properties of a specific type of non-linear dy-
namical system make it appropriate for modeling beat perception in music. I
propose a model of beat induction in which a musical stimulus provides input
to a pattern-forming dynamical system. Under rhythmic stimulation, the
system undergoes bifurcations that correspond to the birth of self-sustained
oscillations and the formation of temporally structured patterns of oscilla-
tions. The resulting patterns dynamically embody the perception of musical
beats on several time scales, patterns known in music theory as meter, or
metrical structure (e.g. Cooper & Meyer, 1960; Hasty, 1997; Lerdahl &
Jackendoff, 1983; Yeston, 1976). These patterns are stable yet flexible: They
can persist in the absence of input and in the face of conflict, yet they can also
reorganize given potent indication of a new temporal structure. Thus, this
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approach may be capable of capturing the robustness of human beat per-
ception. As a preliminary test of the model, I compare its performance with
the results of a synchronization study (Snyder & Krumhansl, 2000) that was
explicitly designed to test beat induction in musical signals.

2. Background

Snyder and Krumhansl (2000) investigated the nature of mental pulse-
finding using a synchronization tapping task. They presented participants
with excerpts of ragtime piano pieces, and asked them to tap the most
comfortable pulse of each excerpt on a piano keyboard. ' Because their
stimuli were relatively complex, and the tapping data provided a good index
of human beat induction performance, these pieces were chosen as an initial
test of the model of meter perception developed below. A four bar section of
one of the Snyder and Krumhansl stimuli will be used to illustrate the basic
concepts of rhythm, beat, and meter. The model itself is described in detail in
the next section.

The stimuli consisted of eight ragtime piano pieces; an excerpt of one of
these pieces (Lily Queen) is notated in Fig. 1. The music notation indicates
right-hand (RH) and left-hand (LH) parts, written on separate staves. The
pitch of each note is indicated by vertical height of the note head, while the
sequential order of notes is indicated by horizontal position; simultaneously
sounded notes (chords) are stacked vertically. The relative timing of events is
indicated by the style of the note stems and beams. A stemmed note without a
flag or horizontal beam is a quarter-note, and its duration is equal to one
beat period, a stemmed note with a single beam is an eighth-note, equal to 1/2
of a beat period, and stemmed notes with double beams are sixteenth-notes,
equal to 1/4 of a beat period. The sixteenth note rests in this excerpt denote
silences (in the RH part) for 1/4 of a beat period. The beat period itself is a
relative temporal measure. Absolute timing information is provided by the
metronome marking (here, MM = 102 beats per minute). In conjunction
with the relative timing information provided by the notation, it indicates
absolute durations of 588.2, 294.1, and 147.1 ms, for quarter, eighth, and
sixteenth notes, respectively. The bar lines (vertical lines through both staves)
denote grouping of events into durations equal to two beat periods (1176.5

! Each tap triggered a percussive hi-hat sound.
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Fig. 1. Four bars from one of the ragtime stimuli used by Snyder and Krumhansl (2000).

ms); these groups are called measures, or bars. Finally, note that in a human
performance of this piece, neither the absolute nor relative durations would
be precisely reproduced. Rather, musical performances exhibit both sys-
tematic and random deviations from metronomic regularity (see Palmer,
1997).

Rhythm refers to the organization of events in time, more specifically the
pattern of timing and accent associated with a music sequence, as shown in
Fig. 1. By accent I mean the phenomenal accent (cf. Lerdahl & Jackendoff,
1983) associated with each sounded event. Phenomenal accent arises
through a complex combination of many variables, including pitch, loud-
ness, timbre, and duration, and is thus difficult to define in a straightfor-
ward way. One important factor in phenomenal accent, however, is acoustic
stress (i.e. intensity accent). So for example, the more notes are sounded
simultaneously the stronger the perceived accent is likely to be, if everything
else is equal.

In psychological terms, a beat is a series of perceived pulses marking
subjectively equal units in time. According to Cooper and Meyer (1960):

Though generally established and supported by objective stimuli
(sounds), the sense of pulse may exist subjectively. A sense of pulses,
once established, tends to be continued in the mind and musculature
of the listener, even though the sound has stopped. For instance,
objective pulses may cease or may fail for a time to coincide with the
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previously established pulse series. When this occurs, the human need
for the security of an actual stimulus or for simplicity of response gen-
erally makes such passages point toward the re-establishment of objec-
tive pulses or to a return to pulse coincidence (p. 3).

In other words, perceived beat is an inference from the acoustic stimulus
(Lerdahl & Jackendoff, 1983), and functions as an expectation for when
events are likely to occur in the future (cf. Large & Kolen, 1994; Large &
Jones, 1999). A perception of beat generally arises in response to an actual
periodicity present in the musical signal; however, it is stable in the sense that
once perceived it may continue even when the periodicity is interrupted in
some way. Perceived beats are transcribed in Fig. 1 using horizontal rows of
dots beneath the musical score (cf. Lerdahl & Jackendoff, 1983); in this ex-
ample four levels of beats are shown. The different levels of beats correspond
to the timing of measures, quarter-notes, eighth-notes, and sixteenth notes.
Finally, when multiple beat levels are perceived one level is generally more
salient than the others. This level is called the tactus; it is defined by the
points at which one would tap along with the music, and the tactus period is
generally notated using quarter notes. 2

Metrical structure, or simply meter, refers to the temporal pattern that is
created by the simultaneous perception of beats at several different time
scales, as shown in Fig. 1. In the figure, the horizontal spacing between beats
denotes the beat period, while vertical alignment denotes relative phasing
among beats of different levels. Metrical structure describes one of the most
important components of rhythmic experience: the feeling of regularly re-
curring strong beats called metrical accent (Lerdahl & Jackendoff, 1983).
Metrical accents arise at temporal locations where the beats of many levels
come into phase. Points where many pulses coincide are felt as strong; points
where few beats coincide are felt as weak. Strong beats are sometimes re-
ferred to as down-beats, and weak beats as up-beats. Like beat, meter can be
thought of as an inference from the musical signal. It is a perceived temporal
structure that is related, but not equivalent to the patterns of timing and
accent (rhythm) of the music. Meter functions as a complex form of temporal
expectation: Events are more strongly expected at strong beats, and less
expected on weak beats (cf. Desain, 1992).

2 The tactus is the basic beat or pulse of the music, in everyday language we sometimes call it rhe beat,
even though several beat levels may be perceived simultaneously.
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To summarize, a rhythm is a temporal pattern that can give rise to per-
ceptions of beat and meter. Beat is a psychological pulse that functions as a
stable expectation: Once established, it tends to continue “in the mind and
musculature of the listener,” even when the rhythm stops or temporarily
comes into conflict with the pulse series. Likewise, a metrical pattern, once
inferred, persists in the face of rhythmic conflict, and gives way only to strong
or consistent contradiction. But how is a sense of beat established? How do
metrical patterns form? And how do they adapt when the music demands?

3. Modeling meter perception

The current approach treats meter perception as an active, anticipatory
mode of rhythm perception, and is based upon three key principles. The first
is that the perception of musical beat is most appropriately modeled as an
active, self-sustained oscillation. This may be conceived as a direct mathe-
maticization of Cooper and Meyer’s description, that a sense of beat “once
established, tends to be continued in the mind and musculature of the lis-
tener, even though...objective pulses may cease or may fail for a time to
coincide with the previously established pulse series.” Second, the perception
of musical meter can be modeled as a network of oscillators that are coupled
to one another. Such a network should give rise to a dynamic metrical per-
cept whose structure reflects both the temporal structure of the input as well
as internal dynamic constraints. Finally, the oscillators of the network, when
driven with a complex external rhythm, should entrain to different period-
icities within the temporal pattern. The entrainment of oscillators at multiple
time scales provides the listener with a framework that shapes expectations
about future events (Large & Kolen, 1994; Large & Jones, 1999).

Self-sustained oscillation arises in a variety of physical systems from
electrical circuits to ecology and neurobiology. Such systems can often be
modeled accurately using non-linear differential equations, where the state
variables and dynamics that capture the nature of the oscillation vary de-
pending upon the physical system under study (see e.g. Hirsh & Smale, 1974;
Murray, 1989). The current study, however, focuses on the development of a
mathematical framework for capturing musical behavior. Thus, it would be
desirable to work at a phenomenological level, a level of description that can
capture our observations about perception and action directly, without
worrying too much about the details of the neural system that gives rise to
the hypothesized oscillations. Fortunately, mathematics provides us with a



534 E.W. Large | Human Movement Science 19 (2000) 527-566

suitable tool, called normal form dynamical systems. A normal form dy-
namical system abstracts away from the details of particular physical models,
in an attempt to succinctly capture the basic properties that are shared
among a family of more complex differential equations. Normal form dy-
namical systems are, in a rather specific mathematical sense, the simplest
systems that capture the basic behavior under study (Arrowsmith & Place,
1990). Within the normal form framework, self-sustained oscillations are
described by a normal form for the Hopf bifurcation, which when written in
the form introduced below, is sometimes called a Hopf oscillator.

In this section, a model of meter perception is developed in four steps.
First, the Hopf oscillator is introduced and its basic behavior described.
Second, a network is defined in which Hopf oscillators compete with one
another to describe the temporal structure of the afferent rhythm. Third, a
driving term is added that (1) causes each oscillator to synchronize its phase
with an incoming musical signal, and (2) adds energy to those oscillators
whose activity correlates well with the rhythmic input signal. Finally, a noise
term is added to model variability in human behavior. This results in a rel-
atively compact description that gives rise to metrical patterns. In the next
section I present some results from stimulation with realistic musical input
signals.

3.1. Mathematical model

3.1.1. Hopf oscillators

The first order of business is to describe how to model a stable internal
pulse, or beat. As described above, the simplest mathematical model for this
job is the normal form for the Hopf bifurcation (Arrowsmith & Place, 1990),
which can be written as a differential equation in the complex variable z(¢).

2= oz + iz — 22| (1)

Here the dot operator denotes the differentiation with respect to time (e.g.
z =dz/df), a is an energy parameter, and o is the eigenfrequency of the os-
cillator. ® The behavior of this system is best understood by transforming to

3 Where possible, I will refer to oscillator periods rather than eigenfrequencies. The relationship of
period to eigenfrequency is p = 2n/w. The term frequency will be reserved to refer to frequencies within
the audible range, i.e. those frequencies which contribute to the perception of pitch. The term period will
be used to refer to the rate of slower periodic events, i.e. those periodicities that correspond to the
perception of musical beat.
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polar coordinates using the identity z(z) = r(¢) expi¢(¢), and separating real
and imaginary parts. The transformation yields a system of two differential
equations, describing the time evolution of amplitude and phase, respectively.

i=r(e—1?),

¢ = o.

This transformation reveals that the amplitude and phase of the Hopf os-
cillator are independent and phase is free-running. Thus, by setting 7 to zero,
one can find the stable states of the system. Such an analysis reveals two
behaviors; the value of the energy parameter determines which behavior is
observed, as shown in the Fig. 2(A). When « is less than zero (energy is being
removed from the system), the system has a stable fixed point with » = 0, and
the system behaves as a damped oscillator. For parameter values («) greater
than zero (energy is being added into the system), a stable limit cycle
develops with amplitude r = /o and the system generates a sustained
oscillation. * Sustained oscillation is the basic model of the internal pulse, or
musical beat.

3.1.2. Network interaction

The perception of meter can be modeled by constructing a network in
which every oscillator has a different period, and the periods span the tem-
poral range corresponding to beat perception (see Section 4.1). How should
the oscillators in such a network interact with one another? One simple ap-
proach is to assume that they must compete for activation through mutual
inhibition. Those oscillations that are the most consonant with the input (i.e.
have higher o values, described below) should tend to deactivate those that
do a poorer job of correlating with the incoming rhythm. Thus, in response
to a rhythmic input signal, only a few oscillators should remain active, those
that best reflect the temporal structure of the rhythm.

Such behavior can be captured with the addition of an interaction term to

Eq. (1):

2n = UpZy + i(l),,Zn - Zn‘zn|2 - Zyngn’Zm|27 (2)
m#n

4 The fact that r can be positive or negative at the amplitude/phase level is an artifact of the
transformation to polar coordinates. Negative and positive values of r can be considered equivalent,
because the amplitude of the oscillation in the underlying system is the same in either case.
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Fig. 2. Schematic overview of a Hopf oscillator. (A) As the energy parameter, « crosses zero a self-
sustained oscillation arises. Zero is the bifurcation point. (B) Within the context of a 2 oscillator network
(Eq. (2)) the bifurcation point moves to a point that is determined relative to the other oscillator’s

amplitude.

where y is an N x N matrix of inhibition parameters, y,, = 0, and N is the
number of oscillators in the network. As above, transformation to polar

coordinates is informative.

. 2 E : 2
}",,,—}"n(OC,,—Vn)— yrnnr”rn1’
m#n

¢, = 0,
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The transformation shows that in Eq. (2) amplitude and phase are inde-
pendent and phase is free running, as in Eq. (1). Thus, inhibition works on
the amplitude dimension only and network interaction can be understood
simply, by restricting further the analysis to the amplitude dimension. A local
stability analysis (see e.g. Perko, 1991) was performed on this system by first
finding the fixed points, or equilibria, of this system, and then linearizing
about each fixed point to determine the conditions (relative parameter values)
under which each fixed point is stable.

Table 1 summarizes the stability analysis for the case of a two-oscillator
network, revealing several interesting features of the system. First, as with
individual oscillators (State 1), both oscillators are deactivated when both
energy parameters are less than zero. Next (States 2 and 3), a single oscillator
is activated when the product of its energy parameter and its inhibition pa-
rameter exceeds the energy parameter of the second oscillator. In this case,
the limit cycle of the active oscillator has amplitude /«,. Finally, when both
energy parameters are high enough (State 4), both oscillators are activated,
each with slightly lower amplitude than it would achieve if activated alone
(illustrated in Fig. 2(B)). A simple rule of thumb for this system is that when
one oscillator is active, the second oscillator’s energy must exceed a certain
proportion of the active oscillator’s energy in order for it to activate; the
required proportion is given by the strength of the inhibition parameter.
Thus, the inhibition terms in the y matrix specify relative activation
thresholds.

There are two additional points to note about the interaction between
oscillators. First, the stability criteria of Table 1 are not all mutually ex-
clusive. It is possible that States 2 and 3 can be stable simultaneously. In
this bistable situation either oscillator can be active depending on the past

Table 1
Fixed point and stability/existence criteria for amplitudes in a two-oscillator network described by Eq. (2)
State Fixed point Stability/existence
1 rn=0rn=0 o0 < 0,0 <0
2 ro=x0,mn=0 o1y > 0
3 r = O, = i\/iz- 002912 > oy
4 0 > 027y, %2 > 01

o — 02Y12

1 =717

I'l::t
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history of the system; this phenomenon is known as hysteresis. The impli-
cation for beat perception is that once an oscillator becomes active, it re-
mains active unless (1) it is actively inhibited by a competing oscillator, or
(2) its energy parameter drops below zero. Second, the analysis of the two
oscillator system generalizes to any number of oscillator as follows. For an
N-oscillator system, 2V patterns of oscillator activation can be stabilized:
Any combination of units can be activated given the right parameters (see
Goldenstein, Large & Metaxis, 1999). When one oscillator is active
r, = Vo, and amplitudes degrade gracefully as more oscillators are acti-
vated.

3.1.3. External input

In this third section, I consider how an afferent stimulus (the musi-
cal rhythm) drives the oscillator network. To do this, the energy para-
meter o is replaced with a multiplicative term involving the input signal

s(1),

zy = 0,8(O)Va(20) 20| + 104z, — Zn|Zn|2 - ZanZn|Zm|27 (3)
m#n

where 7, is a coupling strength that determines magnitude of the input
signal’s effect on each oscillator. V,(z,) = exp(k,(Re(z,)/|z.|))/(expx,) is a
transfer function (Fig. 3(A)) that mediates the effect of input to each os-
cillator as described by Large and Kolen (1994) (see below), where «, is
fixed for each oscillator based on period. > In terms of amplitude and
phase,

iﬁn = l"n(i’]nS(f)V;,((i)n) Cos (bn - 7‘5) - Zymnr"rrzm (33.)
m#n

d.)n = W, — ’/’ns(t)V’l(q&n) sin d)n‘ (3b)
Thus, the external stimulus, s(¢) affects both the amplitude and the phase of

each oscillator in the network. In the amplitude dimension, the energy pa-

5 In previous work (Large & Jones, 1999), the concentration parameter k was allowed to adapt. Here,
for simplicity is fixed for each oscillator increasing monotonically with oscillator period.
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Fig. 3. (A) Transfer function, (B) amplitude coupling function, (C) phase coupling function.

rameter is determined by the product of the input stimulus with a pulse
function (¥,(¢,) cos ¢,; Fig. 3(B)) that embodies the oscillator’s expectations
about when events should occur. Intuitively, oscillator energy is determined
by a non-linear correlation of the signal with the oscillator’s expectations.
The better the oscillator does at predicting the input signal, the higher its
amplitude becomes. In the phase dimension, the effect of the coupling term
is to cause the oscillator to entrain to the input stimulus (Large & Kolen,
1994; see Fig. 3(C)). When an input pulse is early (¢ < 0) or late (¢ > 0)
phase adapts, adjusting temporal expectations to better predict the input
signal.

In both the amplitude and phase dimensions, the transfer function
works as a “temporal receptive field” (Large & Kolen, 1994), a tempo-
ral gate that limits the sensitive phase of the oscillator. Input affects
the oscillator differently depending upon the phase at which it is



540 E.W. Large | Human Movement Science 19 (2000) 527-566

received. ¢ This is depicted in Fig. 3, where the transfer function is shown
alone (Panel A), and as it mediates the effect of input in the amplitude
dimension (Panel B) and the phase dimension (Panel C). For x =0 all
input events affect the oscillator, for k = 2.5 the oscillator concentrates its
response on those events that coincide with its temporal expectations,
ignoring events that occur away from phase zero. This provides an im-
portant form of temporal stability in the phase dimension. In a numerical
investigation of a closely related system, Large and Kolen (1994) dem-
onstrated that the resonances in such a system exhibit a generalized Ar-
nol’d Tongue structure: The oscillator can stably entrain to input whose
period forms a simple ratio (e.g. 1:1, 2:1, 3:1, 3:2) with its own period; the
simpler the period ratio, the more stable the entrainment. This is critical,
because complex rhythmic inputs contain many different periodicities, thus
the oscillator entrains appropriately when the input contains any period-
icity that is consistent with its predictions.

3.1.4. Variability
Finally, to simulate variability in human behavior, noise is added to the
system.

. . 2 2
zy = M,S(O)V,(20) 20| + 105z — z4|za|” — Z YmnZn|Zm|” + \/@C,,(f) (4)
m#n
Here {,(¢) denotes a Gaussian white noise source with zero mean and unit
variance, and Q is a variance parameter, used to set the noise level. Trans-
formation to polar coordinates reveals

iﬁn = rn(’?ns(t) V;(d)n) Cos d)n - 7"3) - Z ’ymnrnryzn + QCn([) Cos (rbn’ (43)
m#n

b, = @, + (1,5 V,(9,) sin ¢,) — (VOL (1) /r,) sin b, (4b)

thus, the additional term contributes noise in both amplitude and phase
dimensions.

%1In polar coordinates it becomes evident that the transfer function is an amplitude-normalized
pulse derived from a von Mises distribution over ¢ with concentration parameter i, : V,($,) =
(exp(kn cos ¢,))/(expk,). Large and Jones (1999) used the von Mises distribution to model performance
in a time discrimination task, conceiving of it as the concentration of attentional energy about expected
time points generated by an attentional oscillation. This transfer function could also be thought of as
modeling the proportion of cells in an underlying neural population that are spiking at any given point
during one cycle of the oscillation (see e.g. Recanzone, Merzenich & Schreiner (1992), with implications
for a tactile temporal discrimination task).
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In summary, the behavioral model consists of a network of Hopf oscilla-
tors, driven by a musical stimulus. Under rhythmic stimulation, this pattern-
forming dynamical system undergoes bifurcations that correspond to the birth
of self-sustained oscillations and the formation of temporally structured
patterns of oscillations, modeling the perception of temporal structure. In
principle such metrical pattern formation could take place in the absence of
overt physical movement; however, synchronization of movement to music
depends upon, and perhaps interacts with, the formation of such patterns.

The model is intended to be general enough to capture meter perception
for a wide range of input signals; the goal of the remainder of this paper is
to test its basic assumptions. Thus, model parameters are chosen based on
general considerations, and are not fit to data in the sense of being ex-
plicitly adjusted to precisely reproduce observed results (with one excep-
tion, see below). In other words, an attempt is made to test the theoretical
assumptions without overfitting parameters that likely could be adjusted to
reproduce certain specific patterns of results quite accurately. The re-
mainder of this paper discusses such a preliminary test of this model,
comparing its meter induction performance with the results of a recent
study of synchronization to music (Snyder & Krumhansl, 2000). The study
was designed to assess mental pulse-finding, and several of its measures are
especially appropriate for gauging model performance. However, because
the model is not one of synchronized tapping per se — among other things,
it does not explicitly include a model of movement (cf. Wing & Kristof-
ferson, 1973) — some comparisons will have to be interpreted with caution.
Furthermore, whereas the model captures the perception of metrical
structure, the experiments measured tapping at only a single metrical level.
Thus, certain aspects of model performance cannot be directly assessed
using these data. Nevertheless, tapping is a direct way to measure many
key variables that relate directly to meter perception, and for these, Snyder
and Krumhansl have proposed benchmark measures for model perfor-
mance.

4. Methods
4.1. Network parameters

There are three parameters that determine the behavior of the oscillator
network, namely the vector of eigenfrequencies w, the matrix of inhibition
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strengths y, and the vector of input coupling strengths #. The range of
oscillator periods (i.e. eigenfrequencies), determines the tempi at which
beats can be perceived. The matrix of inhibition strengths will determine
what oscillators can be activated simultaneously, and thus constrain the
metrical patterns can be represented within the network. Finally, the in-
put coupling strengths determine how strongly the input drives each
oscillator.

A number of estimates have been made of the effective range of rhythm
perception (see e.g. Fraisse, 1982). For the simulation reported below, the
periods of the oscillators were chosen to span the range from approximately
100 to 1500 ms, roughly corresponding to the range over which people ac-
curately perceive changes in the tempo of auditory sequences (Drake & Botte,
1993). Within this range, oscillator periods were even spaced on a logarithmic
scale, i.e. according to an equal-tempered strategy. The complete network
consisted of four octaves of oscillators, with a largest period of 1500 ms, and
24 oscillators per octave This provided a tempo resolution (Weber fraction)
of 2.93% roughly comparable to the best tempo resolution found by Drake
and Botte (1993).

A variety of studies have demonstrated a preference for small integer ratios
in the perception and production of complex rhythms (see e.g. Collier &
Wright, 1995; Fraisse, 1982; Jones & Yee, 1997; Povel & Essens, 1985), with a
preference for ratios of 2:1 and sometimes 3:1. To take these findings into
account, an interaction matrix was designed so that oscillators whose periods
possess 2:1 and 3:1 integer ratios (and multiples of these) compete only
weakly with one another, while those at intervening ratios compete strongly.
Fig. 4(A) shows the competition kernel: one row of the interaction matrix,
describing the inhibition produced by the oscillator with period p on the
other oscillators in the network. The interaction kernel is symmetric about
each oscillator’s period, minima occur at harmonic and subharmonic mul-
tiples of 2 and 3, and competition decreases as with the square of the period
ratio.

Finally, coupling strength, 5, determines the amount of energy added to
the oscillator, and the amount of phase adaptation that takes place, in re-
sponse to each input impulse. This has two important effects on network
performance. First, it governs the overall speed with which the network will
settle into a stable metrical interpretation, called relaxation time. Second, the
network definition (see Eq. (3)) admits a different coupling strength for each
oscillator, allowing independent control (i.e. separate from the interaction
matrix, y) over the nature of the patterns that arise in the network. This
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Fig. 4. (A) The interaction kernel used in the simulations reported in this paper. It is symmetric about
each oscillator’s period, minima occur at harmonic and subharmonic multiples of 2 and 3, and competition
decreases as with the square of the period ratio. (B) Coupling strength, as a function of oscillator period.

makes it possible to bias the relative amplitudes that active oscillators can
achieve, an ability that has both practical and theoretical significance. As a
practical matter, slower oscillators require higher coupling strengths, since
they naturally respond to input more slowly. Theoretically this is important
because it has been reported that people show preferred tapping rates (see
e.g. Fraisse, 1982). Most studies indicate preferred rates centered around
600 ms, but perceptual studies indicate that preferred tempo also adapts to
reflect the mean tempo experienced within an experimental session (Jones &
McAuley, 2000; Woodrow, 1951). The coupling strengths shown in Fig. 4(B)
reflect these three considerations. For base coupling strength, which deter-
mined overall network relaxation time, a value of 7 was chosen to provide a
reasonable relaxation time, after several preliminary runs of the model on
musical input. Second, coupling strength increased with the square of the
ratio of oscillator period to smallest period in the network. Finally, a small
bias was added, so that the network would exhibit a preferred pulse rate.
For simplicity, the preferred rate was chosen to be equal to the mean IBI
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for the Snyder and Krumhansl stimuli, 638 ms; it was not allowed to
adapt. ’

Although the number of individual model parameters is potentially large
(N oscillator periods, N coupling strengths, N? inhibition strengths), in
practice a much smaller number of free parameters determines network
structure. Three parameters determine the range (minimum and maximum)
and spacing of oscillator periods. Because relative coupling strengths are
fixed, one parameter suffices to set the overall level of external driving force;
coupling bias (for preferred pulse rate) is specified by three parameters
(height, width, and position). Finally, inhibition parameters are all based on
the same symmetric interaction kernel (N — 1 distinct values), but by fixing
the functional form of the kernel, the number of parameters is reduced to
one, specifying the overall level of competition, plus two specifying the lo-
cations of the minima of the interaction kernel. Thus, a total of 10 free pa-
rameters describes a general model of meter perception. In addition to these
parameters, system noise was set at, O = 0.0025. The parameters were chosen
as described above and fixed for the subsequent simulations; they were not
explicitly adjusted to maximize goodness of fit to the synchronization data
described below.

In summary, the parameters of the network were selected based upon
general considerations. Oscillator periods were chosen to span the reported
range of human rhythm perception. Coupling strengths were biased so that
the network would exhibit a preferred pulse rate comparable to the preferred
tapping rate observed in humans, providing a connection with the experi-
mental data which used tapping as an index of pulse-finding ability. Finally,
an inhibition matrix was defined to favor temporal structures based upon
harmonic and subharmonic multiples of 2 and 3, allowing the formation of
metrical patterns appropriate to a broad range of musical rhythms. Only
duple ratios occurred in Snyder and Krumhansl’s stimuli; the inclusion of
triple ratios makes the model more general and provides a test of the net-
work’s ability to distinguish between duple and triple structures quickly and
reliably. With these parameters, the network is capable of representing a
large number of possible metrical patterns, it is not specifically tailored to any
particular task or data set. The metrical patterns that form in the network

" The meter perception model performs similarly if coupling bias is omitted, however in such a case the
choice of tapping level (determined by the first metrical level to activate) will reflect the spectral structure
of the input more faithfully. Furthermore, the location of the bias peak can be moved within the range of
reported preferred tempi without strongly affecting the results reported below.
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arise out of a combination of the spectral properties of the input and the
internal constraints of the network. Thus, the simulations described below
test general properties of this dynamic approach to meter perception.

4.2. Computational methods

All simulations were written in Matlab and run on a Sun Workstation
(Solaris 4.4.1; Matlab 5.3). The differential equations describing the behavior
of the oscillator network (Egs. (4a) and (4b)), were solved numerically using
Euler (fixed time constant) integration, with time constant equal to the
sample rate of the input (approx. 10 ms). The network was initialized on each
run with small random amplitudes and phases. The output of the simulation
yielded a time course of amplitude and phase values, which were converted to
pulse times for comparison with the data of Snyder and Krumhansl (2000)
using a simple procedure. The amplitude of each oscillator was averaged over
the length of the performance, and any oscillator whose activation exceeded
an adaptive threshold (7.5% of total amplitude) was considered to have been
active during the performance. Active oscillators were grouped, and the ac-
tivation time of the group was defined as the first point in time when the
amplitude of one of the oscillators crossed the activation threshold. The first
group to become active was considered to be the tactus (tapping) level; tactus
pulses were defined as the pulses of the strongest (highest amplitude) oscil-
lator in the group. ® Pulse times were recorded when the phase of each os-
cillator crossed zero. Typically 1-4 oscillator groups were activated in each
excerpt, instantiating a metrical structure (see, e.g., Fig. 7(C), below).

4.3. The stimuli

In a recent study, Snyder and Krumhansl (2000) focused primarily on two
issues surrounding the perception of beat and meter. The first was that of
syncopation. Syncopation can be operationalized as the lack of events (or
sometimes the occurrence of unstressed events) on strong beats, accompanied
by the placement of stressed events on weak beats. Referring back to Fig. 1,
the right-hand part (RH) of measures 5 and 6 are not syncopated because
events occur only on strong beats. Examples of syncopation occur in the right

8 The simple strategy was viable because the tempo of the excerpt did not change. In more complex
situations, a more sophisticated strategy for reporting beats would be required.
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hand part of measures 7 and 8, however. An unstressed event occurs on the
strongest beat of measure 7, followed by a stressed event on a very weak beat
(the second sixteenth note) and no event on the next, stronger beat. Also, the
last event of measure 7 is stressed, with no event on the following downbeat —
the strongest beat of measure 8. Syncopation amounts to a violation of the
temporal expectations embodied in the perceived metrical structure. How-
ever, if structural expectations arise from a process that attempts to syn-
chronize strong beats with points of musical stress, then strongly syncopated
music could confuse this process. For example, in the RH part of this excerpt,
stressed events (the chords) initially occur at a rate of one per beat, but in
measure 7, due to the syncopation, the rate increases to one per three six-
teenth notes (3/4 beat). In the full excerpt this rhythmic pattern is disam-
biguated by the characteristic duple pattern in the LH part. However,
listening to the RH part in isolation, one might hear this (correctly) as a
syncopation against the original meter, or (incorrectly) as a change from
duple to triple meter. Thus, understanding the perception of syncopation is
critical to understanding the dynamics of meter perception.

The second key issue involves the role of non-temporal factors, such as
bass lines, melody lines, and harmony in influencing beat perception. For
example, in ragtime piano the left-hand part usually consists of bass notes
(played in octaves) on the down-beats, and chords played using higher
pitches on the up-beats. In the current example, only measure 7 strictly fol-
lows this pattern, but according to Snyder and Krumhansl’s analysis, their
stimuli showed this pattern with relative consistency. This type of cue could
be exploited by subjects in resolving the issue of where strong beats are lo-
cated. Thus, listeners might adopt a strategy of aligning strong beats with
bass notes, lessening any potential confusion that arises from the use of
syncopation in this music. Other types of cues, such as the harmonic changes,
and melodic patterns could also be exploited in determining the perception of
metrical structure. Therefore, understanding whether and how pitch infor-
mation influences meter perception is crucial to theoretical modeling of this
process.

In Snyder and Krumhansl’s study, the musical excerpts were generated by
computer so that the timing of the individual events was metronomically
precise (to within +1 ms). The pieces were played to participants via MIDI °

° Musical Instrument Digital Interface, a communications protocol for controlling electronic musical
instruments.
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using a digitally sampled piano timbre. To control different types of pulse-
finding cues that were available, four versions of each piece were generated.
First, full versions (both LH and RH parts) and right-hand only (RH) ver-
sions were created. The elimination of the left-hand part creates a version of
the music that is more syncopated, and potentially more confusing, than the
full version because fewer events occurred on the down-beats. Next, based
upon each of these two versions, two additional stimuli were created from
which non-temporal cues were eliminated. To create the monotonic versions,
all pitches were changed to middle C, and where more than one note was
sounded simultaneously, additional notes were discarded. Fig. 5 shows the
four MIDI versions for measures 5-8 of Lily Queen using piano-roll nota-
tion. Here, pitch is displayed on the vertical axis, using MIDI note number
(MIDI note 60 corresponds to middle C, f, = 262 Hz), and time is displayed
on the horizontal axis. Here, the temporal and non-temporal features of the
stimulus become apparent. For example, time is represented more explicitly,
so it is clear that note durations in the musical score correspond to inter-
onset intervals (IOIs) rather that onset-to-offset durations.

Next, the MIDI stimuli was played on a Kawai 950 digital piano, and the
acoustic signal was passed through a simple auditory model. The auditory
model approximated processing in the earliest stages of the auditory system:
frequency filtering by the cochlea, mechanical to neural transduction at the
level of the primary afferents, and onset responses, which can be observed as
early as the cochlear nucleus (see Langner, 1992, for a review). This may be
thought of as the minimal neural signal that is available to the beat induction
mechanism, making several channels of event onset information available as
input to the model of beat induction. This preprocessing step was similar to
that used in previous models of rhythm perception (Scheirer, 1998; Todd,
1994).

First, the acoustic signal was digitally recorded on a Macintosh G3
computer at a sample rate of 1,1025 Hz, with a 16 bit sample resolution. Then
the digitally recorded signals were passed through the auditory model. A
Patterson—Holdsworth auditory filter bank was used (Matlab implementa-
tion by Slaney, 1998) to separate the data into 20 frequency channels,
spanning the range from 32 Hz to one-half the sample frequency (approxi-
mately the frequency range of the piano keyboard). The data in each fre-
quency channel was then full-wave rectified. Each of the 20 frequency
channels was decimated by a factor of 110 to a sample rate of approximately
100 Hz (1,1025/110 = 100.23 Hz) to speed further calculation. Next, an
onset detection procedure was applied to each channel of data. An amplitude
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Fig. 5. The four experimental manipulations: (A) the original score, (B) the full pitched version, (C) the
full monotonic version, (D) the right-hand version, (E) the right-hand monotonic version.

envelope and its first derivative were calculated in each frequency channel
using Gaussian FIR filters. Finally, the first derivative signals were half-wave
rectified and amplitude-normalized according to overall signal energy,
yielding a primitive representation of event onsets. The result of this process
is shown in Fig. 6 for each of the four stimulus conditions.

To summarize, Snyder and Krumhansl’s stimuli were constructed to
control cues to beat induction in complex musical signals. They controlled
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filtering, mechanical to neural transduction, and onset detection. (A) The original score, and the auditory
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level of syncopation and non-temporal information within a realistic musical
context. The input to the model consisted of digital audio recordings of
the ragtime piano excerpts. The data were preprocessed using a simple au-
ditory model to simulate neurally plausible input signals that may be
available to human beat induction. In the next section I test the performance
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of the model using Snyder and Krumhansl’s stimuli, and compare the
model’s output to the performance of participants in their synchronization
task.

5. Results and discussion

Eight pieces used in the Snyder and Krumhansl experiments served as
input to the model. These pieces were presented in four versions each — full
pitched, full monotonic, RH pitched, and RH monotonic — yielding 32 separate
stimuli. As described above, the different versions controlled amount of
syncopation and pitch information available in the input. One of the more
interesting experimental findings was that synchronization tapping perfor-
mance was largely independent of pitch information for these stimuli. To
investigate this finding, two different versions of the model were run, Simu-
lation 1, which did not use frequency information, and Simulation 2, which
made limited use of frequency information.

In Simulation 1 each oscillator received equal input from all auditory
frequency channels. This was accomplished by summing onsets over all fre-
quency bands, and using the summed input signal to drive all oscillators.
Thus, the only effect of auditory filtering was to ensure that onsets in
high-frequency bands were not masked by energy in the lower part of the
spectrum. In general all onsets were identifiable in this input signal, however
high-frequency onsets tended to have lower amplitude.

In Simulation 2 each oscillator received a slightly different input signal,
depending upon the frequency channel in which each onset arrived. This was
accomplished by taking a weighted sum of the onset signals, where the
weighting differed depending on the period of the oscillator. Slower oscilla-
tors (larger periods) received a greater proportion of their input from lower
frequency channels, while faster oscillators received more input from the
higher frequency bands. The strategy implemented a simple (perhaps learned)
heuristic (cf. Lerdahl & Jackendoff, 1983), that in Western music bass onsets
tend to mark strong metrical locations. The effect of this manipulation was
that for the slower oscillators, onset rates tended to be slower; often onsets
from the higher registers did not appear at all in these input signals. Con-
versely, for faster oscillators, onsets tended to come at a faster pace; these
input signals combined information from events that occurred in the higher
registers with the onsets of harmonics corresponding to events in the
lower registers. In brief, Simulation 1 did not take advantage of frequency
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information, while Simulation 2 made limited, heuristic use of the available
frequency information.

5.1. Initial observations

Fig. 7 shows the result of one run of the model for the initial portion of
Lily Queen. Panel A shows the piano roll notation for the first nine measures
and Panel B shows a trace of oscillator activity (Re(z) = rcos ¢) for the three
most highly activated oscillators in the network (Simulation 1), corre-
sponding to the eighth-note (0.398 seconds), quarter-note (0.595 seconds),
and measure (1.191 seconds) metrical levels. The metrical structure is shown
as pulses (X’s) between Panels A and B, derived from the phase of the three
oscillators shown in Panel B (described in Section 4). The tactus level pulses,
which will be compared with participant tap times below, are the pulses of the
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Fig. 7. The results of one run of Simulation 1 on the first nine bars of Lily Queen. (A) Piano roll notation
of the stimulus. The bracketed portion corresponds to the fours notated in Fig. 1. (B) The oscillations of
the three most highly active oscillators. (C) Mean amplitude for each oscillator in the network over the
length of the performance.
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first oscillator to activate. Here the measure level is identified as the tactus,
however, more often the model identified the quarter note level (at 600 ms) as
the tactus level (see below).

Several features of model performance are immediately apparent in the
figure. First, the oscillators activate early, entrain to the beat of the music
(marked by vertical grid lines on Panels A and B), and quickly attain stable
amplitudes. Panel C summarizes network performance (average amplitude)
for the entire excerpt. Three main peaks in network amplitude are evident,
corresponding to the three oscillations shown in Panel B. An additional, a
smaller peak is evidence of an oscillator group that was active at the be-
ginning of the piece, but lost the competition within the first few seconds.
This is one of many different metrical patterns that can be stabilized within
this network. The spectral properties of the afferent rhythm in conjunction
with the inhibitory network interactions gave rise to this three-leveled, duple
metrical structure.

Next, each model was run twice on each stimulus excerpt. For most
stimulus examples, the model performed comparably between the two (sto-
chastic) runs of the same model, however, for a small number of pieces the
results differed qualitatively between the two runs. To determine how effec-
tively the networks represented the metrical structure of the experimental
stimuli, a histogram was calculated, showing the period of the highest am-
plitude oscillator in each active group relative to the IBI of the corresponding
stimulus pattern (p/IBI). These results are shown in Fig. 8, for the two runs
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of Simulation 1 (Panel A) and the two runs of Simulation 2 (Panel B). Each
histogram represents performance on 64 excerpts (two runs on each of the 32
stimulus excerpts). All activated metrical levels are shown. Several interesting
features of network performance are evident in the histograms. First, there
are four distinct peaks corresponding, from left to right, with sixteenth note,
eighth-note, quarter-note, and measure levels of the metrical structures. Both
networks correctly identified eighth and quarter note metrical levels on al-
most every stimulus excerpt. Next most often the networks activated oscil-
lators at the measure level, and on slightly less than half of the examples, the
networks identified sixteenth note levels. This observation is not directly
comparable with any experimental performance measure, since participants
tapped only one level of beats (the tactus).

The histograms also illustrate which metrical levels were identified as the
tactus, shown as darker bars. Most often the quarter note level (p/IBI = 1)
was chosen, however sometimes other metrical levels were identified as tactus
(see Table 2). This finding is compatible with the performance of participants
in the Snyder and Krumhansl study, who also tapped most often at the
quarter-note level, but sometimes also tapped at the eighth note level or the
measure levels. Participants in both experiments tapped at the quarter note
level more often than the model (also shown in Table 2). The histogram also
reveals several outliers from the main metrical peaks. In these cases, either
the networks found the wrong metrical structure, or sometimes oscillators in
addition to those that instantiated the correct metrical structure were active
for a significant proportion of the performance. In some cases (eight excerpts
in Simulation 1, nine excerpts in Simulation 2) the tactus period differed
significantly (by at least 4%) from the true IBI or related metrical period. In
these cases relative phase often exhibited occasional phase wrapping, a
phenomenon called relative coordination (von Holst, 1937); this was ob-
served mainly in the RH versions.

At this level of analysis, the performance of the two simulations is similar,
with both networks correctly identifying the metrical structure for most

Table 2
Metrical levels chosen as tactus (tapping level) by the two simulations compared with the two Snyder and
Krumbhansl (2000) experiments

Tapping level Simulation 1 (%) Simulation 2 (%) Experiment 1 (%) Experiment 2 (%)

Sixteenth 0 2 0 0
Eighth 8 11 9 3
Quarter 78 75 88 97

Half 14 12 3 0
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excerpts. Both simulations also showed greater variability in choosing a
tactus level than the musician participants. Yet there are several aspects of
network performance that are not captured in the metrical level histograms.
These histograms do not show relaxation time, and they do not show whether
the oscillators were properly entrained at their respective metrical levels. In
the next section, I will examine the phase, and several other aspects of the
behavior of the tactus level oscillators, as network performance is compared
in detail with the tapping performance of participants in Snyder and
Krumhansl (2000, Experiment 2).

5.2. Comparison with tapping data

5.2.1. Dependent measures

To examine network performance in greater detail, I compared network
performance with the tapping data of Snyder and Krumhansl (2000, Ex-
periment 2). To do this, pulse times were derived for the tactus level oscil-
lator, as described in Section 4. Next, canonical beats times were determined
for every metrical level by aligning the events of the MIDI score with the
peaks in the onset signal produced by the auditory model. There was some
variance in onset peak times, and this was dealt with by aligning the MIDI
signal to minimize the mean discrepancy. ' This procedure also compen-
sated for the auditory filter delays by effectively delaying the MIDI signal.
Ideal beat times relative to the onset signal were then extrapolated from the
MIDI score.

Several dependent measures of model performance were defined to match,
as exactly as possible, the dependent measures used in the tapping study
(Snyder, personal communication). First, four modes of pulse alignment were
defined: down-beat, up-beat, neither, and aperiodic. Down-beat and up-beat
mode were counted when two or more pulses in a row occurred within 100 ms
of a down-beat or up-beat, respectively. Two or more consecutive pulses that
corresponded to some other metrical position were counted as neither.
Aperiodic pulses included single deviant pulses and pulses with an inconsis-
tent or drifting phase relationship to the beat. The proportion of time spent
in each mode was tallied. Changes from one mode to another were called
switches. Switches did not include changes to or from aperiodic pulses. Inter-
pulse interval (IPI) was calculated as the average time between tactus level

19 MIDI note onsets were aligned with peaks in the onset signal after summing across frequency bands.
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pulses, excluding IPIs 100 ms or greater than the stimulus IBI, for consis-
tency with Snyder and Krumhansl’s measure. '

The remaining measures were expressed as proportions of the IPI for each
trial. Beats-to-start-tapping (BST) was the time from the first note of the
piece to when the model began outputting pulses, divided by the IBI. The
coefficient of variability (CV) was defined as the standard deviation (SD) of
IPI, divided by IPI, excluding pulses greater than 100 ms from the IBI. The
coefficient of delay (CDel) was the average time between a pulse and the
closest down-beat note or up-beat note, divided by IPI, where positive values
denote pulses that occur after the beat. The coefficient of deviation (CDev)
was the average absolute value of time between a pulse and the closest down-
beat or up-beat note divided by IPI. For both CDel and CDev, only pulses
within 100 ms of a down-beat or an up-beat note were considered.

5.3. Model performance

BST, an index of relaxation time, is shown in Fig. 9 for the musicians
(Panel A), Simulation 1 (Panel B), and Simulation 2 (Panel C). Musicians
began tapping after three or four beats, and they tended to start tapping
soonest for the full-pitched versions, although none of the observed differ-
ences were statistically significant. Simulation 2 is superior to Simulation 1,
which begins tapping sooner than the musicians by about one beat. Simu-
lation 2 does a fairly good job of capturing mean BST over the four stimulus
versions, and the overall magnitude of differences between the means of the
different stimulus conditions is comparable to the Experimental data. Thus,
the model’s relaxation time squares reasonably well with human perfor-
mance, with Simulation 2 providing a better match to the data than Simu-
lation 1.

Tapping mode, shown in Fig. 10, measures whether pulses occurred on the
down-beat (in phase with the ideal beat) the up-beat (antiphase), neither (at a
some other consistent phase) or aperiodic (any other relationship). Musicians
tapped quite reliably in the down-beat mode for the full-pitched versions, but
less often as the stimulus information degraded. They tapped more often on
the down-beat for pitched than monotonic versions, and more for the fu// than

' Cases in which the model’s tactus IPI differed by more than 4% from the IBI (or relevant metrical
ratio) were eliminated from these calculations because the calculation of one or more dependent measures
broke down, or because phase-wrapping caused an erroneously high number of mode switches to be
counted. These totaled eight cases for Simulation 1 and nine cases for Simulation 2.
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Fig. 9. BST for (A) musicians, (B) Simulation 1, and (C) Simulation 2.

RH versions. Tapping in the neither and aperiodic modes increased with
syncopation (more for RH than full versions). Overall, syncopation disrupted
performance more than the lack of pitch information. Both simulations
match this general pattern of results relatively well. More pulses were pro-
duced in down-beat mode for the full-pitched versions, with performance
deteriorating for the degraded versions. Pulses were produced more often on
the down-beat for pitched than monotonic versions, and more for the full
than RH versions; also, pulses were produced more often in neither mode for
RH than full versions. The absolute proportion of down beat taps matched
musicians’ performance closely for Simulation 2, significantly outperforming
Simulation 1. The performance of Simulation 2 deteriorated too much for the
RH versions, however (less than 60% down-beat taps, greater than 20%
neither taps). In addition, there were too many up-beat taps and too few
aperiodic taps in the stimulus degraded versions. Overall however, Simula-
tion 2 provided a good match to the tapping mode data, and performed more
like musicians than Simulation 1.
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Fig. 10. Tapping mode for (A) musicians, (B) Simulation 1, and (C) Simulation 2.

Switches per excerpt (Fig. 11) served as a key index of phase stability,
measuring the ability of the model to persist in its initial interpretation of
strong beat locations. The number of switches between tapping modes was
low for musicians (less than one in every condition) and stimulus degradation
produced a systematic breakdown in phase stability. More switches were
observed in RH than full versions, but the difference between pitched and
monotonic versions was not significant. Again syncopation was more dis-
ruptive to synchronization tapping than lack of pitch information. Both
simulations predict this qualitative pattern of results, producing more
switches in RH than full versions. In the full versions, both produce relatively
few switches overall, less than one per excerpt. However, neither simulation
performs as stably as musicians in absolute terms, with both producing about
three times as many switches. A follow-up investigation indicated that for
both simulations a large proportion of switches occurred in the first few
pulses, suggesting that the model may not have been fully relaxed in the
phase dimension.
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The variability measures (Fig. 12), served as additional indexes of phase
stability. CV (Fig. 12) was lower overall for both simulations than for the
musicians, which is interpretable under the assumption that some variability
arises in the (unmodeled) motor system (cf. Wing & Kristofferson, 1973).
Both simulations appear to predict the observed increase of CV for the more
syncopated RH versions, although Simulation 2 outperforms Simulation 1 in
predicting the lack of effect for pitched versus monotonic versions. The re-
maining two measures, CDel and CDev, gauged overall phase offsets. Both
models diverge from human performance in predicting large phase lags in the
full-pitched, with Simulation 2 performing more poorly than Simulation 1 in
this regard. Interestingly, aside from this large discrepancy, Simulation 2
predicts CDel in the other conditions with a fair degree of accuracy. It is
perhaps unwise to interpret these final two comparisons in much detail,
however, because these measures lie beyond the limit of comparability be-
tween this model and the current data. The model is one of beat perception,
and does not explicitly include a model of tap production. People may tap
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ahead of the beat, for example, in order to synchronize perceptual feedback
from the taps with the perceived beat (see e.g. Semjen et al., 1998), and such
considerations are not taken into account in this formulation of the model.
Overall, however, the level of variability observed in both simulations is
consistent with human performance.

In summary, the pattern forming network identified metrical structures in
ragtime piano pieces, and stimulus-degraded versions of the pieces. The
model typically identified 3 or 4 metrical levels in each piece, ranging from
the lowest level present in these pieces (sixteenth notes) through the measure
level. Metrical structure was correctly identified in most cases; however, the
network’s choice of tactus (tapping) level was more variable than humans’.
Both simulations identified metrical structures incorrectly in some other
cases; these were almost always stimulus degraded versions. In predicting the
tapping data of Snyder and Krumhansl (2000), Simulation 2 (which used
frequency information) consistently outperformed Simulation 1 (which did
not use frequency information). Simulation 2 matched human performance
well for natural music (full-pitched versions), and also predicted patterns of
breakdown that were observed in human performance as information was
removed from the stimulus. Most importantly, Simulation 2 correctly pre-
dicted that syncopation should be more disruptive to pulse-finding than lack
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of pitch information for these stimuli. This is somewhat surprising given that
Simulation 2 is the one that uses frequency information; however, Simulation
1 also predicted the main features of the data. Model parameters could al-
most certainly be tweaked to provide a closer match to this particular pattern
of results, however, this preliminary assessment provides a strong indication
that the principles upon which the model is based capture key features of
rhythm perception for complex, temporally structured stimuli such as music.

6. Conclusions

The pattern-forming dynamical system described here gave rise to metri-
cally structured patterns of oscillation when stimulated with rhythmic input.
It provided reasonable predictions of human performance for natural music,
and network performance deteriorated similarly to human performance as
stimulus information degraded. For both the model and for the musicians,
increased syncopation was more disruptive to synchronization than lack of
pitch information. Thus, this preliminary test provides initial support for the
model, and also suggests promising areas for future research.

Interpreted in isolation, the empirical results appear to indicate that pitch
information is not important in pulse finding, at least not for these stimuli.
However, the modeling results contradict this interpretation: The simulation
that used pitch information matched human performance more closely than
the simulation that did not use pitch information. This apparently contra-
dictory finding leads to a number of insights, however. First, even in the
empirical study, pitch information did have some effect (Snyder & Krum-
hansl, 2000); significantly, musicians tapped less often on the down-beat for
monotonic versions of the music. This indicates that pitch information is an
important cue to phase, a finding that was reinforced by the modeling results.
Pitch information conferred the biggest advantage to the model in phase
preference (Fig. 10), assessed here as tapping mode. This interpretation
squares with previous work regarding the role of non-temporal information
in pulse-finding. Music theorists have suggested that a wide range of non-
temporal cues interact in the perception of musical meter (e.g. Lerdahl &
Jackendoff, 1983), and the influence of non-temporal factors in tapping be-
havior has been established (e.g. Repp, 1999b; Jones & Pfordresher, 1997).
Thus, it seems likely that pitch information influences the perception of
rhythm when it is available, but that people are able to adapt to a lack of
pitch information to some extent. Importantly, pitch information can reduce
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phase ambiguity. Thus, tapping behavior can be significantly disrupted for
highly syncopated music in the absence of pitch information. This suggests
that one important direction for future research regards the role of pitch
information in determining phase preference. More detailed empirical data
on how and when pitch information influences rhythmic perception and
performance is necessary.

Other factors are also likely to prove significant, especially when it comes
to phase preferences for highly syncopated music (e.g., the RH versions) and
phase stability, assessed here as switching rate. The most noteworthy of these
is phase coherence, which is an important theoretical aspect of meter per-
ception (Lerdahl & Jackendoff, 1983), and has been identified as a key factor
in modeling time perception (Large & Jones, 1999; Large & Palmer, 2000). In
the current model formulation the phases of the various oscillations are not
always coherent, because no phase interaction was defined among the os-
cillators in the pattern-forming network. Phase interactions have been
omitted at this modeling stage for two reasons. First, it is important to un-
derstand the phase preferences that arise solely in response to the external
signal. In addition, the formal analysis of network behavior is more
straightforward in the absence of such interactions. A significant next step in
modeling at the behavioral level will be to define internal coupling such that
oscillators entrain to one another, preserving metrical relationships. In this
scenario, the network would have to settle on a phase interpretation of the
rhythm as a whole, and this may be expected to improve predictions re-
garding strongly syncopated music, and switching of phase interpretations.

As described in the introduction, alternative models of beat induction and
tracking have been proposed. While it is not possible to compare our model
of each of these in detail, it is informative to make the broad distinction
between non-linear and linear models (e.g. Scheirer, 1998; Todd et al., 1999)
of beat induction. Linear models use banks of band-pass or comb filters in
place of the non-linear oscillator network that is described here. Todd’s
model also includes a control theoretic component as an explicit model of the
role of the motor system in beat perception. Although no linear model has
been described that is able to recover an entire metrical structure, these
models have had some success at beat finding; and a direct comparison would
be informative at this level. In a bank of linear filters, all filters are always
active to some extent, and the job of deciding which filter is currently the
most highly active becomes a tricky business. This can lead to instability in
identification of both beat period and phase, resulting in high rates of in-
terpretation switching (Scheirer, 1998). By contrast, the advantages of the
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dynamical system approach follow precisely from stability properties. Thus,
such pattern forming networks should be expected to display certain benefits
over linear models, such as the ability to quickly find a metrical interpretation
that remains viable for some time. As demonstrated here, such abilities are
similar to those observed in human performance.

Other dynamical models of temporal tracking and/or motor synchroni-
zation (deGuzman & Kelso, 1991; Gasser et al., 1999; Large & Kolen, 1994;
Large & Jones, 1999; Large & Palmer, 2000; McAuley, 1995; Pressing, 1999;
Toiviainen, 1998) have been formulated as discrete-time maps rather than
continuous-time differential equations. In fact, the current model has evolved
from a generalization of the well-studied sine circle map, first proposed by
Large and Kolen (1994) to model entrainment to complex, temporally
modulated musical performances. Circle maps arise as mathematical sim-
plifications of self-sustained oscillations, and the phase dynamics of Large
and Kolen’s original model is precisely the discrete version of Eq. (3b). More
recently, sophisticated discrete-time models have been described that assume
a small system of harmonically related oscillations with internal phase cou-
plings defined to embody the temporal structure of particular complex se-
quences (Large & Jones, 1999; Large & Palmer, 2000). Closely related
formalizations model complex forms of synchronization of motor sequences
to auditory patterns (deGuzman & Kelso, 1991; Pressing, 1999) using har-
monically structured phase coupling terms in place of multiple internal os-
cillations. The limitation of such of approaches is the requirement of
specifying the network topology or the coupling parameters based upon an a
priori knowledge of the sequences involved. One approach to this problem is
to simply assume that the relevant parameters can be stored in memory and
retrieved at will (e.g. Pressing, 1999). The current model deals with the
problem more directly, by proposing a network that automatically activates
the appropriate internal oscillations to reflect the temporal structure of novel
sequences.

Finally, although the materials chosen to test the network controlled for
two key aspects of stimulus complexity, there are other equally important
issues that models of meter perception must address. The most significant of
these is tempo modulation: Musical performances exhibit systematic devia-
tions from metronomic regularity. Temporal fluctuations in performance are
not noise, they are important cues for structural and emotional content
(Large & Palmer, 2000). Earlier modeling work has focussed primarily on
this issue (Large & Kolen, 1994; Large & Jones, 1999; Large & Palmer, 2000),
however, the current proposal differs from earlier models in the way that
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tempo tracking is conceived. Rather than explicitly adapting the period of
internal oscillations, tempo tracking is handled at the network level. Peaks in
oscillator amplitude (Fig. 7(C)) should move when performance tempo
changes significantly. Evaluation of this approach on tempo modulated
musical performances is an issue for future research.

So, how do people synchronize to music? The answer proposed here is that
as people listen to musical rhythms, a stable multi-periodicity pattern arises
psychologically, serving as a dynamic embodiment of the temporal structure
of the rhythm. In the simplest case, a single periodicity is used to guide
tapping along with rhythms. In other situations, more complex metrical
patterns may be engaged for synchronization of intricate movements such as
in dance. Ultimately, this form of musical behavior speaks to the deep in-
terdependence of action and perception. However, in understanding this
connection, complexity of the real-world stimuli should not be underesti-
mated. As the current analysis reveals, many important aspects of coordi-
nated movement may linked directly to the perception of stimulus structure.
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