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Abstract

The perception of beat and meter is fundamental to the percep-
tion of rhythm, yet modeling this phenomenon has proven a
formidable problem. This paper outlines a dynamic model of
beat perception in complex, metrically structured rhythms that
has been described in detail elsewhere (Large, 1994; Large &
Kolen, 1994). A study is described in which pianists per-
formed notated melodies and improvised variations on these
same melodies. The performances are analyzed in terms of
amount of rubato and rhythmic complexity, and the model’s
ability to simulate beat perception in these melodies is
assessed.

Introduction

The ability to perceive beat and meter is, arguably, the most
fundamental perceptual capability underlying our experience
of musical rhythm. Simply put, beat perception refers to the
perception of periodicity within a complex rhythm. When
one taps one's foot along with a musical performance, for
example, oneis physically marking beats corresponding to a
perceived periodicity. Meter perception can be described in
similar terms, as the perception of two or more periodicities
that coexist on different rhythmic time scales (Lerdahl &
Jackendoff, 1983; Yeston, 1976). Relationships among beats
of different levels define regular temporal structures that cap-
ture relative time relationships. Such metrical structures
describe patterns of metrical accents that may explain rela-
tive prominence: the perception of strong and weak beats
that characterizes the experience of musical rhythm. These
musical concepts also have close correlates in theories of lin-
guistic rhythm (e.g. Lerdahl & Jackendoff, 1983; Liberman
& Prince, 1977).

Researchers in diverse fields have explored the power of
such theories to explain various phenomenain the perception
of rhythmically structured acoustic signals. As one might
expect, this diversity of interest has led to awide diversity of
proposed models, including context-free grammars (e.g. Ler-
dahl & Jackendoff, 1983; Longuet-Higgins, 1987), symbolic
Al agorithms (e.g. Dannenberg & Mont-Reynaud, 1987,
Rosenthal, 1992), statistical approaches (e.g. Brown, 1992;
Palmer & Krumhandl, 1990; Vercoe & Puckette, 1985), and
connectionist models (e.g. Desain & Honing, 1991; Scarbor-
ough, Miller, & Jones, 1992). Although each captures certain
aspects of beat and meter in idealized rhythms (i.e. rhythms
comprised of precise durations as may be found in amusical

score), varying levels of difficulty are encountered when
models are confronted with the flexible and complex
rhythms that humans naturally produce.

The difficulty of modeling the perception of temporal
structure in naturally performed rhythms arises from sev-
eral sources. One source of difficulty is rubato. Performers
use rubato, or systematic timing deviation, to communi-
cate musical intentions, and such temporal deviation gives
rise to nonstationary rhythmic signals. Another source of
difficulty is rhythmic complexity, which refers to factors
such as the number of different duration values present in
arhythm and the use of syncopation. In short, the periodic
components of rhythms that correspond to perceived beats
are not truly periodic, and even in ideally timed rhythms
there are missing events and extraneous events.

In this paper, beat perception is considered as a pattern
of coordination that arises between an internally generated
periodic process (a self-sustaining oscillator) and a period-
icity within a complex external rhythm (Jones, 1976;
Large, 1994). A dynamic model of this process, described
in detail elsewhere (Large, 1994; Large & Kolen, 1994), is
first outlined. Briefly, the coordination of internal and
external periodicities is mapped onto the attractor states of
a dynamical system comprising an external (driving)
rhythm, and an internal (driven) oscillator (cf. Schoner,
1991; Kelso, DeGuzman, & Holroyd, 1990). Further, the
intrinsic dynamics of the internal oscillator are assumed to
adapt to the external rhythm, accounting for the robustness
of beat perception to systematic timing deviations and
rhythmic complexities found in naturally produced
rhythms. Next, a study is described in which pianists per-
formed notated melodies and then improvised variations
on these same melodies. The performances are analyzed in
terms of rubato and rhythmic complexity. Finaly, the
robustness of coordination between a simulated oscillator
and atarget periodicity within each rhythm is assessed.

A Dynamic Model of Beat Perception

External Rhythmsand Internal Rhythms

The current approach relies upon the notion of a (smple)
internal rhythm that responds to one periodicity within a
(complex) external rhythm. An externa rhythm is repre-
sented as a sequence of discrete impulses, s(t), each
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Figure 1: A sequence of discreteimpulses, representing the
onset of events (notes), drives a nonlinear oscillator.

denoting a single event (e.g. a note onset). Figure 1 shows a
such series of impulses, corresponding to note onset timesin
an improvised melody, collected on a computer-monitored
piano. The rhythmic signal serves as a driver, and impulses
in the signal perturb both the phase and the period of a
driven nonlinear oscillator, causing changes to the oscilla-
tor’s behavior.

The internal rhythm is treated as a limit cycle oscillator, a
structurally stable dynamical system exhibiting an asymptot-
ically stable limit cycle. The advantage of this approach is
that it does not require a great deal of knowledge about the
state space or the dynamics of the internal rhythmic process.
Rather, the state of the oscillator is reduced to a single vari-
able called phase, ¢(t) , representing the position of the oscil-
lator around itslimit cycleat time t.

Phase is used to model expectations regarding when future
events (impulses) are likely to occur. Phase can be defined
for —-p/2<t<p/2 as ¢(t) =t/p, where p isperiod, the time
required to complete one cycle of the oscillation. According
to this definition, phase varies from -0.5 to 0.5. The points
¢(t,) = 0 reflect times at which the oscillator maximally
“expects’ events to occur. When an event occurs at time
t<t,,itissaidto beearly; whenit occursat time t>t, isit
said to be late. Thus, we have the relation:

t-t
t) = —2,
o0 =—

tx—gst<tx+g. (Egn 1)

The notion of expectation can be further refined by intro-
ducing the notion of a pulse function (Large & Kolen, 1994),
describing a “soft” expectancy region around ¢(t,) = 0. A
pulse function can be defined as:

X(t) = 0.5(1 + tanhy (cos2md(t) —1)) (Egn 2)

where the gain parameter y describes the width of the pulse
(Large & Kolen, 1994). Figure 2 shows this pulse function
for y = 2. Pulse amplitude is non-zero for arelatively small
portion of the oscillator’'s cycle, defining a temporal recep-
tive field. The temporal receptive field corresponds to a sen-
sitive phase for the oscillator; adaptation to external events
(below) occurs only when events fall within this region.

Phase Entrainment and Adaptation of Parameters

Coordination of the internal oscillator with an external peri-
odicity is described as phase entrainment (aform of synchro-
nization), supplemented by adaptation of oscillator

parameters. Phase entrainment is modeled using a phase
attractive circle map (cf. Kelso, DeGuzman, & Holroyd,
1990). The circle map predicts the phase, ¢, ., a which
the next event will occur, as:

g

Givg1 = Ot +ﬂ¢f(¢i:Yi)a (Egn 3)

i+1

where ¢; is the phase of the oscillator at which the ith
impulse occurs, t;, ,—t; captures the sequence of inter-
onset intervals present in the driving rhythm, and f(¢;, v;)
isanonlinear phase coupling term that describes the alter-
ation of phase brought about by the ith input impulse. The
coupling strength, n,,, describes the amount of influence
that the driver has upon the attentional oscillator.

The primary advantage to modeling beat perception in
this way is temporal stability: the ability of such a system
to sustain coordinated patternsin athe face of afluctuating
environment, and to reestablish coordination after pertur-
bations (Schoner, 1991). Because of the special complexi-
ties of performed musical rhythms, however, adaptation of
oscillator parameters is also required. First, because per-
formed musical rhythms are nonstationary (i.e. the period
changes in systematic ways), the model oscillator also
adaptsitsintrinsic period:

(Ean 4)

Pit1 = B +nph(¢i, P> ¥i) -

The coupling function, h(¢;, p;, v;) , describes the adapta-
tions of oscillator period that result from individual input
impulses. Adaptation rate np (analogous to coupling
strength in Equation 3) determines the rate at which oscil-
lator period adapts to changes in the stimulus period.

The model handles rhythmic complexity by defining the
functions f(¢;,v;) and h(e;, p;, v;) insuch away that phase
and period change only when impulses fall within the tem-
poral receptive field. Impulses that fall outside the field do
not affect phase and period. This makes the size of the
temporal receptive field crucial: if it is too small the oscil-
lator will not robustly handle rubato, yet if it is too large,
the oscillator will be led astray by complex rhythms. Thus,
v aso adapts to the stimulus, according to the relation:

[y

~ 08 Temporal receptive field
4 (sensitive phase)
[9)
B 0.6
=
£ 04
<
0.2

0

0 02 04 -04 -02 O
phase (¢)
Figure 2: A pulse function and its associated temporal

receptive field (sensitive phase).

02 04 -04 -02 O



N r(ti+l_ti)

Pi

= (1 + 9000 1))e , (Eqn5)

Vi+1
where g(¢;, y;) describes adaptations of gain that result from
individual input impulses. y also decays each cycle, thus if
there is no event in the oscillator's current cycle, y
decreases, widening the tempora receptive field. Finaly,
confidence, ¢, ameasure derived from gain, varies from zero
to one, measuring the overall success of the oscillator in find-
ing a periodicity in the input signal. The functions f(¢;, y;) ,
h(¢;, P, v;) » and g(¢;, v;) arederived in (Large, 1994).

Per for mances of Notated M elodies and
Improvised Variations

The Test Data Set

To test the robustness of the model in response to musical
performances, a test set of sixty melodies was collected as
follows (for detailed description of the data collection proce-
dure, see Large, Pamer, & Pollack, 1995). Two pianists per-
formed melodies on a computer-monitored Yamaha
Disklavier acoustic upright piano. Three children's melodies
were chosen as performance material. For each melody, the
pianists performed and recorded the melody, as presented in
musical notation, five times. With the musical notation
remaining in place, the pianists were then asked to play five
improvisations. All performances were of a single-line mel-
ody only; pianists were instructed not to play harmonic
accompaniment.

Next, skilled musicians transcribed the improvisations in
standard musical notation. To assess the amount and distri-
bution of rubato among the performances, a measure of tim-
ing deviation was calculated for each performance as a
coefficient of variation of performed inter-onset intervals
(I0ls), based either on the notation (for performances) or the
transcriptions (for improvisations). This measure of devia-
tion was then averaged across the five performances of each
melody or improvisation by each pianist. An analysis of vari-
ance (ANOVA) on mean rubato by performance type
(notated melody vs. improvised variation), subject, and tune
was conducted. There was asignificant main effect of perfor-
mance type (F(1,4) = 33.46, p < 0.01), indicating that, on
average, more rubato was used in the improvisation of varia-
tions than in the performance of the melodies from notation.
Mean rubato was 0.05 for notated melodies, and 0.10 for
improvisations. There was aso a significant interaction
between tune and subject (F(2, 8) = 13.89, p < 0.01). Pianist
1 performed the melodies and improvisations for the first
two tunes with little rubato, but for the third tune with high
rubato. Pianist 2 performed tune three with little rubato, and
performed tunes one and two with relatively high rubato.

Beat Tracking Performance

Next, the oscillator's ability to model beat perception in

these melodies was assessed. The response of the oscilla-
tor was intended to model the perception of beats at a par-
ticular level in ametrical structure (Lerdahl & Jackendoff,
1983). For each performance, the modal inter-onset inter-
val (10I) category was determined from the score or tran-
scription, and chosen as the target periodicity. For each
performance, the unit was initialized such that ¢ = 0 at
theinitial onset, and p was set to theinitial 10l of the tar-
get periodicity. Thus, the oscillator did not have to cope
with finding initial phase or period.

A number of statistical measures of performance were
collected. Only mean absolute value of relative phase,
(|ol) , is reported here because this measure corresponded
most closely to intuitive impressions of successful coordi-
nation, gleaned by listening to oscillator output. {(|¢|)
measures performance as the mean absolute phase of the
oscillator on which events marking the beat occurred (as
determined by the scores and transcription). (|¢[) = 0
means perfect performance, while (|¢|) = 0.5 isthe poor-
est performance possible (meaning that the unit was 180°
out of phase with the beat throughout the melody), and
(|¢l) < 0.1 generally corresponded to a subjective impres-
sion of good performance. For each melody, oscillator per-
formance was assessed by comparing (|¢|) with the mean
rubato score.

Performances of notated melodies and performances of
improvised variations differed qualitatively in level of
rhythmic complexity, and differed significantly in the
magnitude of timing deviations, so results are discussed

separately.

Perfor mances of Notated Melodies. First, the oscillator
was exposed to the thirty performances of notated melo-
dies. Performances of notated melodies provided a con-
trolled level of rhythmic complexity. Each melody
contained three intended duration categories. sixteenth
note, eighth note, and quarter note. Statistics were col-
lected, and an analysis of variance (ANOVA) was con-
ducted with factors tune, subject, and analysis type (mean
rubato vs. average absolute phase). The ANOVA showed a
main effect of analysis type (F(1, 4) = 27.73, p < 0.01),
with mean rubato = 0.05, and average phase = 0.06. Thus,
for these performances oscillator performed dightly worse
than mean rubato would predict. Thisvalue of (|¢) , how-
ever, indicates that on average the was able to achieve
robust coordination with target periodicities.

To illustrate the nature of oscillator coordination, Figure
3 gives an example of the oscillator’s behavior in response
to a performance of Baa baa black sheep. Panel A pro-
vides a notated version of the melody (transcriptions of
improvisations do not include grace notes or other orna-
ments) and a single row of dots from a metrical structure
grid (Lerdahl & Jackendoff, 1983) marking the target
events. Notes that are not marked by dots correspond to
extraneous events; dots that do not correspond to notes



mark times when events are “missing” from the target peri-
odicity. Panel B shows both input and output of the oscilla-
tor. The dashed lines show impulses in the signal (marking
event onset times). Because of the scale, full output pulses
are not shown, rather discrete output pulses (shown as solid
lines) are displayed at t = t,. These two lines overlap when a
target event is performed at precisely the time predicted by
the oscillator, that is, at phase zero, ¢(t) = 0, of the driven
oscillator. Amplitude of the discrete oscillator pulses corre-
sponds to confidence, c. High amplitude of the discrete
pulse corresponds to a small tempora receptive field, low
amplitude corresponds to a wide receptive field.

Panel C shows a tempo curve for the performance as a
solid line. This curve was derived by extracting the target
events from the performance and graphing 10Is for these
events. This curve gives the I0Is to which the oscillator
should respond. Panel C shows actual observed cycle times
of the oscillator using a dotted line. Observed cycle time
takes into account not only the intrinsic period, p, of the
oscillator, but also phase ¢(t) asit is adjusted in each cycle.
Beginning at the initial tempo, the unit effectively calculates
a local tempo, and follows performance tempo as the per-
former speeds up and slows down.

Improvisation of Variations. Next, oscillator performance
on the thirty improvised variations was examined. The
improvisations provided a more difficult situation than the
performances of notated melodies for two reasons. The
rhythms of the improvisations were more complex than the
rhythms of the melodies, making use of syncopation, and
containing up to seven different levels of intended durations
according to the transcriptions. Also the improvisations
showed significantly greater timing deviation than did the
performed melodies. The oscillator was exposed to the melo-
dies, statistics were collected, and an anaysis of variance
(ANOVA) was conducted with factors tune, subject, and
analysis type (mean rubato vs. average absolute phase). The

ANOVA showed no main effect of analysis type (F(1, 4) =
0.005, p = 0.947), with mean rubato = 0.10, and average
phase = 0.10. This result shows that for these perfor-
mances, oscillator performance is on par with mean
rubato. The ANOVA aso indicated a significant interac-
tion of tune and subject (F(2, 8) = 4.0, p < 0.05), indicating
that the oscillator had more trouble with some perfor-
mances than with others. Case by case examination
revealed that in 20 out of the 30 cases, the oscillator coor-
dinated well with its target periodicity ({|¢|) <0.10). In 10
cases the oscillator had some difficulty. The 10 difficult
cases were examined; two of the most difficult are dis-
cussed here.

Pianist 1's improvisations on Mary had a little lamb
were performed in a freely timed blues style. The first
improvisation had the highest rubato score (rubato = 0.25),
and highest mean phase ({|¢|) = 0.17). The oscillator’'s
behavior in this case was representative of its performance
on this group of melodies, so it was chosen for further
study. The time series corresponding to the performance of
the oscillator are shown in Figure 4. The tempo curve indi-
cates the presence of large timing deviations at several
points in the melody. Points of particular interest are
around t = 3000ms, t= 8000ms, t= 16000ms, and t =
23000ms. At these points, y drops (correspondingly, con-
fidence drops) alowing the oscillator to continue to syn-
chronize with the target in spite of the large deviations.

In spite of these difficulties, however, the figure shows
that the oscillator did a respectable job of entraining to its
target periodicity in this rhythm. Beats are output at
approximately the correct times throughout the piece —the
oscillator is not lured away by the many distractor events
in thisrhythmically complex performance. Another way to
see this is to note that the value of average absolute phase
((l¢ly = 0.17) islower than mean rubato (0.25). Addition-
aly, oscillator confidence is high for large sections of the
piece; by the oscillator’s internal measure its performance
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Figure 3: A performance of Baa baa black sheep (rubato = 0.05, (|¢|) =0.08).



isgood. 9 of the 10 problem cases examined fit the profile of
this case. The oscillator had difficulty in certain sections of
the performances, but always recovered gracefully, reestab-
lishing coordination after large perturbations.

In 1 of the 10 difficult cases examined, however, the result
was poor. Pianist 2'simprovisations on Hush little baby were
the most varied of all the improvisations studied and made
heavy use of rubato. The improvisation that proved the most
difficult for the model to handle was the third variation. This
improvisation made moderately heavy use of rubato and had
the highest mean phase, (rubato = 0.16, {|¢|) = 0.30). These
numbers suggest extreme difficulty in coordination. Figure 5
shows the actual time series corresponding to the perfor-
mance of the oscillator. Throughout this improvisation the
performer makes use of a sort of “jagged” rubato. The tempo
curve, shown in panel C, reveals timing deviations that
gtrictly alternate: slower, faster, slower, faster. Panel C also
shows the effect of this pattern on observed cycle times.
Cycle times are always one step behind the performed dura-
tions because changes to the oscillator’s phase and period in
the current cycle effect oscillator cycle time for the following
cycle.

Because timing deviations zigzagged in this fashion, cycle
time decreased when performed duration increased, and
vice-versa. This rubato pattern occurred in other perfor-
mances as well, however in this case the amount of rubato
was large enough to pose a serious difficulty for the oscilla-
tor. The oscillator responds to the correct events, and outputs
pulses at more-or-less the correct locations throughout the
piece. However, confidence is low throughout as the oscilla-
tor attempts to establish a coordinated pattern. Thus large,
alternating rubato patterns represent a limiting case for the
single oscillator model.

Discussion

Melodies are perhaps the most difficult cases for beat per-

ception models, because they provide fewer reliable cues
than accompanied melodies. Bass lines and harmonic
accompaniment tend to be more rhythmically consistent,
providing additional information. In this study, perfor-
mances of notated melodies provided a controlled level of
rhythmic complexity, while improvised variations pro-
vided syncopation and a great variety of duration catego-
ries. Both types of performance contained timing
deviations, making the task of coordinating with a single
periodicity a challenging one. Yet, in 49 out of 60 cases,
the oscillator performed robustly by an objective measure
(Clol)).

In 11 cases, difficulties were encountered ((|¢|) > 0.10).
These difficulties were caused by large tempora devia-
tions, stemming from three sources. heavy use of rubato
including ‘ phase-shifts', actual timing errors on the part of
performers, and jagged rubato curves resulting from alter-
nating shortened and lengthened durations (Large, 1994).
In 10 of the 11 cases, however, the oscillator was well
coordinated for large sections of the melodies, having
trouble in some areas but reestablishing coordination after
large perturbations.

In the most difficult case, an improvisation that coupled
heavy rubato with an aternating tempo profile, the oscilla-
tor performed poorly (|¢[) = 0.30. Although it did not
lose the beat atogether, it was not able to adequately fol-
low the tempo changes, and its internal measure of perfor-
mance was consistently low. This caseillustrates the limits
of a single oscillator model. Note, however, that tempo
changes of approximately the same magnitude strictly
dternate (Figure 5, Panel C). This means that had the
oscillator been operating at the next larger periodicity, it
would have found almost no rubato at al. Cases such as
this would tend to argue for a multiple oscillator model. In
a multiple oscillator model different oscillators operate at
different time scales (Large & Kolen, 1994). Interna inter-
actions synchronize internal oscillators, and the perception
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Figure 4: Animprovisation on Mary had a little lamb (grace notes are not transcribed) (rubato = 0.25, (|¢|) = 0.17).
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Figure 5: Animprovisation on Hush little baby (rubato = 0.16, (|¢|) = 0.30).

of metrical structure can emerge from the perception of beat
on multiple levels. Building networks of interacting oscilla-
tors to model the perception of metrical structure is a focus
of current research.

Overadll, the single oscillator model coordinated remark-
ably well with complex rhythms given no information other
than event onset times. These analyses suggest that nonlinear
oscillators, driven with complex, nonstationary rhythms that
arise from musical performance, can adequately model the
perception of musical beat, and may ultimately be used to
model the perception of musical meter as well.
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