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Abstract

We present a method for the generation of real-time
dynamic autonomous agents in game environments. The
method is based on the use of dynamical systems theory
which allows us to express intelligent behaviors using sys-
tems of differential equations. These differential equations
operate at two distinct levels. At one level, the differen-
tial equations governing movement comprise a carefully de-
signed set of attractor-repeller fields. At a second level,
behavior selection is modeled using a competition dynam-
ics that determines the relevant contributions to the move-
ment dynamics at each time instant. Thus, our autonomous
agents are capable of exhibiting useful behaviors in com-
plex environments. Using this approach we are able to
demonstrate in real time behaviors such as single and mul-
tiple target tracking with both stationary and moving obsta-
cles.
Keywords: Digital Agents, Game Animation, Motion Plan-
ning, Dynamical Systems.

1. Introduction

The importance of game and simulation applications
grows everyday, as does the need for animated agents that
operate autonomously in these environments. These agents
must be able to exhibit certain behaviors without user in-
tervention. Various methods for generating higher levels of
behavior and movement decisions were investigated first in
the pioneering work by Reynolds [19], and then in work by
others [8, 27, 18, 3, 14, 20, 9, 25, 13].AI approaches [8, 11]
are capable of generating autonomous behavior, but such
techniques typically require complex inferencing mecha-
nisms. This may require considerable computational re-
sources, raising the question of scaling up such systems
as the number of independent agents grows, or when each
agent has a completely different goal and behavioral direc-
tives. In addition to these factors, agents must be able to in-

teract with real-time moving objects that might either con-
tribute to or compromise the final goal. Other approaches
to this problem employ computational geometry techniques
in rather restricted environments [26], while learning, per-
ception, and dynamic techniques have also been employed.
[21, 25, 13, 7]. Dynamic system approaches to this prob-
lem have mostly been explored at the level of control theory
[6, 28,?, 25] which restricts the type of behaviors that can
be simulated.

In this paper, we investigate and develop an alternative
methodology that has its roots in behavior-based robotics
(e.g., [4, 5]) and is based on a novel way of combining dif-
ferential equations exhibiting particular behaviors. Accord-
ing to this methodology, one defines a representation whose
dimensions correspond to agent behavior. Using this type of
approach, Schöner and colleagues have developed a dynam-
ical system for governing robot movement. In this system
a set of behavioral variables, namely heading direction and
velocity, defines a state space in which a dynamics of robot
behavior is described [22, 23]. Movement is governed by
a nonlinear dynamical system that generates a time course
of the behavioral variables. The system dynamics are speci-
fied as a nonlinear vector field, while the task that the agent
will execute depends upon the task constraints. Task con-
straints are modeled as component forces, defining attrac-
tors and repellers of the dynamical system. The individual
constraint contributions are additively combined into a sin-
gle vector field, which determines the observed behavior.

This early approach to the autonomous generation of
movement was restricted to the generation of individual be-
haviors such as navigation toward a fixed goal. Recently,
however, methods have been developed to allow an agent to
arbitrate among a large number of potential behaviors, and
to generate complex sequences of activity in a manner that
is robust, yet flexible in the face of a changing environment
[24, 10]. To achieve this result a second dynamical sys-
tem is defined that operates in the space of task constraints.
This dynamic approach forces task constraints to compete
for representation at the behavioral level. Thus, at any given



time the behavioral vector field (and the observed behavior)
comprises a subset of possible task constraints. The param-
eters of the dynamical system are chosen in such a way that
the agent’s behavior is appropriate to the current situation.

Here we adapt the above methodology to develop au-
tonomous dynamic behaviors for games. In particular, we
devise a set of time adaptive differential equations to rule
the heading angle and forward speed of a given digital au-
tonomous agent. Based on a principled combination of
these equations we create a set of relatively complex low-
level behaviors which are reactive in nature. Using this sys-
tem, decisions are made on-line and do not require any pre-
vious memory, training or global planning. The set of tar-
gets and obstacles can change during the course of the sim-
ulation, since the agent is able to make “smart” local deci-
sions based on its current global knowledge of the dynamic
environment it is situated. An example of such a behavior
is that the agent will temporarily disregard a target if there
is an unsurpassable moving or stationary obstacle immedi-
ately between them. It will then focus (as a human would)
on first avoiding the obstacle and then it will refocus on the
target.

Our system allows single or multiple target tracking in
the presence of multiple static or moving obstacles. The de-
sign of the differential equations allows the tracking of tar-
gets whenever their position is within the visible cone of an
agent requiring only the estimation of its current position.
However, obstacles are processed in a local fashion based
on their relative location to the agent and the target. Given
our applications, in our current implementation our agents
are memoryless and reactive in nature and depending on the
situation (emergence of new obstacles and/or targets) their
behavior can change abruptly.

In the following sections, we present previous related
work in the area, the design of our system and the series
of real-time experiments geared towards game applications.

2. Movement Dynamics and Task Dynamics

In our methodology we combine two distinct dynamic
systems to model the movement and behavior of each au-
tonomous agent. The first system controls the movement
of the agent. The state space of this system is two dimen-
sional, the first variable represents the heading direction�
and while the other specifies forward velocityv. Each au-
tonomous agent’s movement is described in polar coordi-
nates. The heading angle is controlled by a one dimen-
sional non-linear dynamical system, which consists of re-
pellers placed in the subtended angle of the obstacles, and
attractors in the subtended angles of targets (see section 2.1.
In our formulation, the heading speed is modified by the rel-
ative location of the obstacles (see section 2.2).

A second system controls the agent’s movement decision

making, i.e., its behavior. Based on this formulation, an
agent ignores targets or obstacles, depending on the scene
geometry around the agent at each time instant. This is
modeled based on another type of nonlinear dynamical sys-
tem, running on a faster time scale. This system outputs
weightsthat linearly combine the different attractor and re-
peller contributions as calculated by the first system. The
state space of this system is the space of the task constraints.
The values of the state vector components determine which
“elements” of the environment (e.g., obstacles, targets) will
be used in the calculation of the agent’s movement and
therefore behavior. An important aspect of our methodol-
ogy is that it scales polynomially with the complexity of the
environment.

In the following we present the details of each of each of
the two dynamical systems.

2.1. Movement Dynamics I: Heading Direction

The first dynamical system models the control of the ba-
sic movement of each autonomous agent. The movement
is defined by a 2D vector representing the agent’s heading
angle and forward speed.

The heading angle� of a given agent is controlled by a
dynamical system of the type:_� = f(env); (1)

whereenv is the vector of variables which models the en-
vironment (e.g., the geometry and position of the obstacles
and targets) and we describe in detail below.

According to our dynamical system formulation each el-
ement of the environment can “attract” or “repel” an agent.
We will therefore use attractors to model targets and re-
pellers to model objects that should be avoided.

We model an attractor asftar = �a sin(��  ); (2)

where is the angle of the target’s location relative to the
agent’s location anda is a constant parameter.

In order to model complex environment obstacles, ene-
mies, or hazards are distinct entities. Fire-pits, for example,
are clearly more dangerous than a large wall. Therefore the
repeller definition should have enough parameters to model
the different types of objects. We achieve this by defining
a repeller to be the multiplication of three different func-
tions,Ri;Wi; Di, which result in being able to model the
type of repeller, its distance to the agent and the extent of
its influence to the environment. We therefore repeller asfobsi = Ri Wi Di: (3)

FunctionRi models a generic repeller, and is constructed
as: Ri = (� �  i)� i e�1��� i� i �; (4)



where i is the angle of obstaclei and� i is the angle
subtended by it.

The second function,Wi, is responsible for limiting the
angular range of the repeller’s influence in the environment
and is modeled asWi = 12[tanh(h1(cos(��  i)�cos(2� i + �))) + 1]; (5)

which models a window-shaped function andh1 is respon-
sible for the inclination of the window’s sides and is mod-
eled by h1 = 4=(cos(2� )� cos(2� + �)): (6)

Here� is a “safety margin” constant.
The third and last function,Di, models the influence of

the obstacle to the environment by taking into account the
distance of the obstacle from the agent and is modeled asDi = e� rid0 ; (7)

whereri is the relative distance between them, andd0 con-
trols the strength of this influence as the distance changes.

The resulting influence on the agent from all obstaclesi = 1; : : : ; n, is the sum of the respective repellersfobs= nXi=1 fobsi : (8)

Therefore, the definition of the dynamical system con-
trolling the heading angle in (1) is obtained as:_� = f(env) == jwtarjftar + jwobsjfobs + n: (9)

The weightswtar andwobsare intended to eliminate spurious
attractors that can occur by the direct summing of the non-
linear functions modeling the various obstacles and targets
in the environment. Theseweightsare obtained through
a “constraint competition”, the second dynamical system
mentioned previously and described in detail in Section 2.3.
Finally, the noise termn allows the system to escape from
unstable fixed points in the definition of (9) (e.g., the “cen-
ter” of a repeller, where_� = 0, but any slight displacement
would make it escape from such a situation such as the sit-
uation of a ball situated on the crest of a hill).

The above functions are carefully designed so that cer-
tain expected actions will appear in the final system. Let’s
first consider a simple example (see Fig. 1), the result of a
simple interaction between a target, an attractor, and an ob-
stacle, a repeller. Because we have not yet described the
constraint competition, let’s assume for now thatwtar =wobs = 1. Let’s also take the simple case that the loca-
tion of the obstacle is close to the straight line between the
agent and the target.

It is clear that the agent will have to go around the ob-
stacle in order to hit the target. In this case, the modeling
of the agent’s heading direction_� based on (9) is shown in
the lower right graph of Fig. 1. It is the composition of the
target function (upper right graphic) and obstacle function
(middle right graphic). The presence of two final attractors,
indicated by the two arrows in the lower right graph, show
the two possible obvious ways to get to the target and avoid
the obstacle.
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Figure 1. Interaction between one Attractor
and one Repeller.

A second more complex example consists of the agent
facing two different obstacles located side by side. If the ob-
stacles are too far apart, the agent should be able to pass be-
tween them, otherwise it will have to go around them. This
decision is taken automatically, as it can be seen in Fig. 2.
Fig. 2(a) depicts the case where two obstacles are too close,
Fig. 2(b) depicts the case where the distance between the
obstacles is exactly equal to the size of the agent, a critical
condition, and Fig. 2(c) depicts the case when the obstacles
are far apart to allow the easy passage of the agent between
them. For this simple case (no target and two obstacles) we
have plotted (9) at the bottom of each figure as a function
of the angle between the agent orientation and the y axis
(assuming that the noise termn is zero). The dark curve is
the superposition of the two lighter curves representing the
contribution from the two obstacles. These functions clearly
show that the dynamical system exhibits the correct behav-
ior in terms of the value of the_�. For example in Fig. 2(a)_� = 0 depicts an unstable fixed point which would result in
the agent trying to go through the obstacles. However, the
insertion of a small amount of noisen will overcome this
situation easily given the function diagram.

2.2. Movement Dynamics II: Modeling the Agent’s
Velocity

In the previous section we modeled the change in the
agent’s heading direction. In this section we model its for-
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Figure 2. Interaction of two different obstacle repellers.

ward movement. There are a series of different possibili-
ties to accomplish this, but in this paper we discuss three
of them. The first is theconstantvelocity, the second is
the time-to-contactmethod, and the third is thederivative
method.

The first option is obviously the easiest one, the agent
always moves with a constant speed. This method normally
works quite well as long as the agent moves slowly enough.
Unfortunately, in some situations it leads to disastrous re-
sults. If the heading direction system gets stuck in a spu-
rious attractor, it will most certainly collide since its speed
remains constant. Therefore adaptative speeds are neces-
sary in order to achieve a better behavior.

An alternative method seeks to address this problem by
making the speed change as a function of the distance be-
tween the agent and the closest viewable obstacle. In this
time-to-contact method [12] the forward velocity is con-
trolled such that the agent seeks to keep its time-to-contact
with upcoming obstacles constant. Using this strategy it is
even possible to make a “retreat” (negative forward speed)
if this distance is too small.

The idea of the “derivative” method is to slow down
when changing direction. A fast change of direction means
that either the virtual agent is going in the wrong direction,
or even worse, going towards a collision course with an ob-
stacle. In this method, the forward speed is a function of the
derivative _� according to the angle (not time).

For the simulations reported in the following sections,
forward velocity was controlled using the time-to-contact
strategy. However, we continue development of the deriva-
tive strategy to provide robust control of velocity in a greater
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Figure 3. Spurious angle attractor.

range of situations.

2.3. Task Dynamics: Constraint Competition

Individually, the attractors and repellers defined in sec-
tion 2.1 work well, but because of their non-linear char-
acteristics their direct sum might not always yield the ex-
pected results. For instance, in the example shown in Fig-
ure 3, the sum of one attractor with the two repellers pro-
pose an impossible path in between the two obstacles – they
are too close from each other to allow the agent’s passage.

To avoid this kind of problem, the composition of the
attractors and repeller functions is not obtained by a di-
rect sum, but though an weighted average by weightswi.
These weights are the result of the second dynamical sys-
tem, which runs at a more refined time scale wrt the dy-



namical system in (9). This second system is modeled as_wi = �iwi(1� w2i )�Xj 6=i j;iw2jwi; (10)

where in the simple case where only obstacles and targets
are modeled, the state space (wi) consists of(wtar; wobs), as
used in (9).

This system is completely defined by the parameter func-
tions�i, termedcompetitive advantage, the parameter func-
tions ji, termedcompetitive interaction, and the initial
value of its state space. At each time instant these parame-
ters will be computed according to the geometry of the envi-
ronment, and through (10) we obtain the weights to be used
in (9). The composite system runs on two time scales – (10)
is evaluated at a much faster rate compared to (9). This is in
order to ensure that the computed weights result in a stable
fixed point of (10) as we will explain below.

The correct design of the parameter functions�i andji
will provide the desired low level behaviors. Therefore it
is important to understand the stability of this system (for
more details see [15]), and incorporate the geometry of the
environment in the “low-level” behaviors. Table 1 shows
the stability analysis for (10).wtar wobs Stability

0 0 Unstable �tar; �obs> 0
0 �1 Stable obs,tar> �tar�1 0 Stable tar,obs> �obs�Atar �Aobs Stable �obs> tar,obs

and �tar > obs,tar

Table 1. Stability Analysis.

There are four distinct cases each one related to a differ-
ent behavior. The first case,(wtar; wobs) = (0; 0) leads to a
situation where the target and the obstacle contributions in
(9) are turned off. Obviously this case should be avoided,
because the agent would move in an unpredictable way. To
avoid this situation, both�i should always be greater than
zero.

The second case(wtar; wobs) = (0; 1) occurs when the
target’s contribution is turned off (like in the case of Fig. 3).
It is stable as long asobs,tar> �tar.

The third case(wtar; wobs) = (1; 0) happens when obsta-
cles are ignored. This may occur, for example, when there
are no obstacles near the target. This case is stable whentar,obs> �obs.

The last case is when the values of both weights are
nonzero,(wtar; wobs) = (Atar; Aobs), also known as the “av-
eraging” solution. The following two conditions have to
be satisfied for this case to be stable�obs > tar,obs and�tar > obs,tar. This is definetely a desirable situation.

It is important to note that conditions two and three are
not mutually exclusive, and they can happen simultane-
ously. In this case we have a situation ofbistability.

Based on the above, the design of�i andij should cre-
ate the different stable points according to the environment
parameters. This process is described with details in [10],
and the functions for this two-dimensional case are:obs;tar = e�c2PtarPobsec2 i; tar;obs = 0:05 (11)�tar = atar; �obs = tanh nXi=1 Di (12)

wherePtar andPobs are:Ptar = sgn(dFtard� )ec1jFtar j (13)Pobs =Wobssgn(dFobsd� )ec1jFobsj (14)

and alsoatar is such that whenever there is competition
among targets and obstacles, targets will loose, but it will
always be active if there is only a “background” noise. This
is set here to be0:4(1� �obs). Di (see (7)) is the function
used in the distance contribution of each obstacle repeller,
and their sum gives a good estimate of the concentration of
obstacles around and near the agent.

3. Experimental Results

The system was implemented in C, usinglua ([17, 16, 1])
as an extensible embedded language to describe both the
scene and the target(s)/agent(s) movement.

The constanta in (2) was set to1 and the safety margin� in (6) was set to 0.8. The Euler integration time step was0:25 and all the simulations run in faster than real time.
In the first experiment shown in Fig. 4 we used a single

static target and a series of static obstacles between it’s lo-
cation and the target’s initial position. Note that in this cased0 was3:0.

In the second experiment shown in Fig. 5 the scene is
composed of one static target and multiple moving obsta-
cles. The agent avoids collision by changes of direction and
sometimes by a velocity reduction or even a complete stop.
In this simulationd0 was set to2:0.

In the third experiment shown in Fig. 6, there is a group
of static obstacles and a moving target. The agent success-
fully reaches the target and avoids the moving obstacles. In
this cased0 was set to0:8 and the final velocity was the
result of the method scaled by0:8.

In the last experiment (Fig. 7) we illustrate the flexibil-
ity of our method by showing multiple moving and static



targets together with moving and static obstacles . The con-
stantd0 was set to1:0.

In the video all the above experiments appear rendered
based on the use of the rendering package Pov-Ray [2].

4. Conclusions

We have presented a technique to model autonomous
agents for game environments. Using a dynamical system
approach we control the agent’s heading direction and its
velocity. We have demonstrated natural low-level agent be-
havior in environments with multiple targets and station-
ary/moving obstacles.

There is a whole set of parameters to control the expected
low-level behavior of the overall system. Unfortunately this
set is not intuitive for an animator. We are currently working
towards making the whole process of modeling a behavior
both more high-level and “user-friendly” as well as flexible
enough for different applications. New functions are being
analyzed in order to achieve a significantly larger and more
complex set of behaviors.
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Figure 4. First example: static target and obstacles. The ci rcle with an arrow represents the agent,
the circle with the cross is the target and the empty circles a re obstacles. Dotted lines show the past
trajectory of the moving objects. The same representation a pplies to the other figures.

(a) (b) (c)

Figure 5. Second example, static target and moving obstacle s.

(a) (b) (c) (d)

Figure 6. Third example, moving target and static obstacles .

(a) (b) (c) (d)

Figure 7. Forth example, multiple moving/static targets an d moving/static obstacles.


