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Abstract: 1/f serial correlations and statistical self-similarity (fractal
structure) have been measured in various dimensions of musical
compositions. Musical performances also display 1/f properties in
expressive tempo fluctuations, and listeners predict tempo changes
when synchronizing. Here the authors show that the 1/f structure is
sufficient for listeners to predict the onset times of upcoming musical
events. These results reveal what information listeners use to anticipate
events in complex, non-isochronous acoustic rhythms, and this will
entail innovative models of temporal synchronization. This finding
could improve therapies for Parkinson’s and related disorders and
inform deeper understanding of how endogenous neural rhythms antici-
pate events in complex, temporally structured communication signals.
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1. Introduction

The temporal organization of acoustic signals is critical for perception and communica-
tion. Neuronal rhythms in auditory,1 visual,2 motor,3 and frontal4 cortical areas
synchronize with the rhythms of communication signals. Cortical synchronization has
been linked to attentional allocation,5 scene analysis,4 intelligibility,6 and behavioral coor-
dination.7 For example, entrainment of cortical rhythms to speech may engage
neurodynamic mechanisms of temporal prediction8 to segregate incoming information9

and organize spike timing.10 However, key questions surround the prediction of quasi-
periodic rhythms typical of music performance or conversational speech. Here we present
the first empirical demonstration that fractal, or 1/f, temporal structure provides sufficient
information for prediction of event onset times in a quasi-periodic musical rhythm.

Music is an important model system for the study of rhythmic communication
because its rhythmic structure is well-understood. Musical rhythms are generally per-
ceived to have a pulse, or basic beat, in the range of approximately 0.5–4 Hz.11 Meter
corresponds to the percept of alternating strong and weak beats; in addition to the pulse
frequency, metrical structures comprise faster beat frequencies that subdivide the pulse
(4–8 Hz), and slower beat frequencies (<2 Hz) that accent pulse cycles.11 Rhythmic

a)Author to whom correspondence should be addressed.

EL256 J. Acoust. Soc. Am. 136 (4), October 2014 VC 2014 Acoustical Society of America

Rankin et al.: JASA Express Letters [http://dx.doi.org/10.1121/1.4890198] Published Online 11 September 2014

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  137.99.31.134 On: Tue, 30 Sep 2014 00:36:57

mailto:srankin5@jhmi.edu
mailto:P.Fink@massey.ac.nz
mailto:edward.large@uconn.edu
http://dx.doi.org/10.1121/1.4890198
http://crossmark.crossref.org/dialog/?doi=10.1121/1.4890198&domain=pdf&date_stamp=2014-09-11


patterns are also perceptually grouped into phrase structures. Like music, speech is gen-
erally hierarchical, where syllables (4–8 Hz) assemble into lexical and phrasal units at
slower timescales (<4 Hz).12 However, the fundamental timing of speech is more flexible
than that of most music. Nevertheless, hierarchically nested auditory cortical rhythms10

are entrained by both music1,3 and speech rhythms.13

In musical performance, musicians may substantially vary the frequency of the
underlying pulse (the tempo), to interpret compositions14 and express emotion.15

Interestingly, when people synchronize with musical performances that contain large
tempo changes they predict the fluctuations, such that changes in the tapping rate cor-
relate with changes in the pulse rate at zero lag.16 Tempo fluctuations display fractal
structure,16 therefore it may be the intrinsic nature of 1/f serial correlations and fractal
scaling that enables prediction. Conversely, it could be the information in other acous-
tic dimensions that renders tempo fluctuations predictable. When synchronizing with
mechanical performances that lack temporal fluctuation, peoples’ timing profiles resem-
ble the metrical structure of the score.17 Expert tempo fluctuations correlate with the
musical attributes of the composition, including metrical structure, rhythmic pattern,
and melody,14 which also exhibit fractal structure.16,18

In this experiment we assessed the extent to which predictions rely on the intrin-
sic 1/f structure of temporal fluctuations versus the structure in other acoustic dimensions,
by controlling both the structure of the fluctuations [3 temporal structure conditions:
Natural (1/f), random (shuffled), and synthetic (1/f)] and the presence of musical informa-
tion (4 acoustic information levels: Quarter-note, eighth-note, rhythm, and pitch).

2. Methods

2.1 Participants

Twelve volunteers (8 males, 4 females) from the Florida Atlantic University community
participated in the experiment. Each participant signed an informed consent form that
was approved by the Institutional Review Board at Florida Atlantic University.

2.2 Procedure

Participants tapped on a MIDI drum pad (Roland Hand-sonic HPD-15) to a sequence
of MIDI events generated using a custom Max program (Cycling’74, San Francisco).
The stimuli included 4 levels of musical information (quarter-note, eighth-note, rhythm,
and pitch) crossed with 3 types of temporal structure (natural, synthetic, and random).
In all 12 conditions (natural, random, synthetic)� (quarter-note, eighth-note, rhythm,
pitch) the participants’ task was to synchronize tapping at the quarter-note frequency
[Fig. 1(E)], keeping pace with the changes in tempo [Fig. 1(F)]. An induction sequence
of 5 clicks, with inter-onset intervals (IOIs) equal to the first IOI of the sequence, was
presented to prepare the participants to tap at the correct metrical level. After the induc-
tion sequence, participants tapped to the performances for the full duration of the stimu-
lus (2:07 min) using the index finger on their dominant hand.

2.3 Stimuli

The stimuli were based on an expert piano performance of Isaac Albeniz’s Iberia II, Triana
[Fig. 2(A); Mm. 1] recorded at the biannual Minnesota International Piano-e-competition,
a highly competitive, judged piano competition.19 In this competition, performances
were recorded on a Yamaha CFIIIS concert grand piano equipped with Disklavier Pro
recording technology, which collects the MIDI data via fiber optics. Jie Chen’s first-
prize winning performance (2004) of this piece was selected to create the stimuli
because (1) the composition would be unfamiliar to the average participant, (2) the pi-
ece had a strong pulse which could easily be felt by the average listener, and (3) it was
a master performance with large tempo fluctuations that exhibited fractal structure (see
Table 1). Additionally, there was rhythmic activity throughout this piece at the 16th-
note metrical level, which facilitated construction of the different tempo fluctuation
conditions, described next.
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Mm. 1. Jie Chen’s piano performance of Triana from Isaac Albeniz’s Iberia II. (3.4 MB)
[URL: http://dx.doi.org/10.1121/1.4890198.1].

2.3.1 Tempo fluctuations

The performance was matched to its written score using a custom dynamic programming
algorithm.20 Beat times were extracted from the first 2:07 min (measures 1-66) of the per-
formance at the 16th-note metrical level. Beats without a corresponding sounded event
were interpolated using local tempo, and inter-beat intervals (IBIs) were calculated by
subtracting successive beat times. The 16th-note metrical level was chosen for the analysis
of tempo fluctuations because there were a large number of beats (N¼ 784) with enough
corresponding events to eliminate the need for excessive interpolation of beat times.

The Power Spectral Density (PSD) and Hurst’s rescaled range (R/S) analyses
were used to compute the fractal properties of IBI time series [Fig. 2(A) and Table 1].
The Hurst exponent, H, was calculated as the slope of the normalized range (R/S) as a
function of interval length. The resulting value, H, can assume any value between 0
and 1, and gives a measure of smoothness (dimension) of a fractal object or time se-
ries. When H¼ 0.5, the points in the time series are uncorrelated and independent.
When H> 0.5, positive statistically self-similar correlations (long-term memory) are
present.21

Fig. 1. (Color online) Musical information. Rhythmic and acoustic features were extracted from Iberia II,
Triana and progressively added to the stimuli to create 4 levels of musical information. The quarter-note level
(D) consisted of a sound for each beat at the quarter-note metrical level. The eighth-note level (C) consisted of a
sound for each beat at the eighth-note metrical level. The rhythm level (B) consisted of a sound for each event in
the musical score. The pitch level (A) contained the temporal information from the rhythm level with the addi-
tion of the pitch information for every event. Participants tapped at the quarter-note level (E) for each stimulus,
keeping pace with large tempo changes (fluctuations from the natural stimulus are plotted in (F); see Sec. 2 for
further information).
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Stimuli with 3 different types of tempo fluctuation were created for the experi-
ment: Natural, synthetic, and random. We first computed the Hurst exponent and the
slope of the PSD to measure the scaling and long-range correlation [see Fig. 2(A)] in
the natural (fractal) condition. Next, we shuffled the 16th-note level natural IBIs until
the PSD and R/S analyses showed that there were no long-term correlations (i.e., spec-
tral slope¼ 0, H¼ 0.5) to produce the random time series, which had the same IBI dis-
tribution as the natural time series but was not fractal and did not correlate with the
musical structure of the Albeniz composition [Fig. 2(B)]. Finally, we generated a syn-
thetic fractal time series, using the spectral synthesis method,21 that had the same
Hurst exponent (H¼ 0.76; Table 1) and approximately the same IBI distribution as the
natural time series [Fig. 2(C)], but did not correlate with the musical structure of the
Albeniz composition. For each tempo fluctuation condition, IBIs were cumulatively
summed to provide the event times.

2.3.2 Musical information

Each of the tempo conditions was presented using 4 levels of musical information
(quarter-note, eighth-note, rhythm, and pitch). To create these levels we extracted

Fig. 2. (Color online) Temporal structure of stimuli. Time series (IBIs), distribution, and PSD for the 3 types of
tempo fluctuation. In all 3 conditions mean IBI¼ 159 6 52 ms (standard deviation). The natural (1/f) time series
(A) was obtained by extracting beats at the 16th-note metrical level from the original performance. The random
time series (B) was obtained by shuffling the natural time series (A) until b¼ 0.00. The synthetic time series (C)
was obtained using the spectral synthesis method to essentially filter the random time series so that it would con-
tain the same fractal structure as the natural time series.

Table 1. Mean, standard deviation, number of events, HfGn, and the autocorrelation at lag 1 (ac1) for the IBIs
of each fluctuation type at all 3 metrical levels (1/16¼ sixteenth-note, 1/8¼ eighth-note, 1/4¼ quarter-note).

Mean IBI St dev IBI
Number of events HfGn ac1

Fluctuation 1/16 1/16 1/16 1/8 1/4 1/16 1/8 1/4 1/16 1/8 1/4

Natural 159 ms 51.8 784 392 196 0.76 0.70 0.67 0.565 0.401 0.302
Synthetic 159 ms 59.4 784 392 196 0.76 0.77 0.78 0.383 0.451 0.469
Random 159 ms 51.8 784 392 196 0.51 0.53 0.54 �0.007 0.056 0.144
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different kinds of musical structure from the Albeniz composition [Fig. 1(A)], and
mapped this information onto the natural, random, and synthetic temporal structures
described above. The quarter-note time series [Fig. 1(D)] was created by extracting ev-
ery 4th beat from the 16th-note level time series of each of the 3 tempo fluctuation
conditions. This yielded a time series of beats at the quarter-note metrical level (mean
IBI¼ 743 ms) which reflected only changes in the quarter-note rate [Fig. 1(F)]. The
quarter-note condition did not contain information about the meter, the rhythm, loud-
ness fluctuations, or pitches. The quarter-note stimuli were delivered to the listener as
a single stream of events using a woodblock sound (Mm. 2).

Mm. 2. Natural-quarter-note (1.4 MB) [URL: http://dx.doi.org/10.1121/1.4890198.2].

The eighth-note time series [Fig. 1(C)] was created by extracting every second
beat from the 16th-note level time series. The eighth-note stimulus contained eighth-
note level beat times that provided a metrical subdivision of the quarter-note level, but
did not contain information about the rhythm, loudness fluctuations, or pitches. The
eighth-note stimuli were played as a series of events (clave) with the quarter-note level
beats presented simultaneously using a lower pitched woodblock sample. Participants
were instructed to tap with the lower pitch (quarter-note). Thus, participants heard one
sound for each beat at the eighth-note level, between each tap (Mm. 3).

Mm. 3. Natural-eighth-note (1.4 MB) [URL: http://dx.doi.org/10.1121/1.4890198.3].

The rhythm time series [Fig. 1(B)] was created by retaining all event times from
the Albeniz composition (i.e., the rhythm), but eliminating pitch information. In other
words, each of the 3 tempo fluctuation conditions (natural, synthetic, random) was
mapped onto the rhythm from the Albeniz composition. The rhythm also did not include
chord asynchronies or loudness fluctuations from the performance, because chord asyn-
chronies are known to improve tempo tracking, and loudness fluctuations are typically
highly correlated with tempo fluctuations.14 The monotonic rhythm was presented using
a clave sample, simultaneously with the quarter-note level events [Fig. 1(D)], which were
presented using a lower pitched woodblock sample (Mm. 4). Participants were instructed
to tap with the lower pitch (quarter-note), as in the eighth-note level.

Mm. 4. Random rhythm (1.4 MB) [URL: http://dx.doi.org/10.1121/1.4890198.4].

The pitch time series [Fig. 1(A)] included the same temporal information as
the rhythm time series with the addition of the pitches from the Albeniz composition,
which provided melodic and harmonic information. The pitch time series was presented
using piano sounds, simultaneously with the quarter-note level events which were pre-
sented using a woodblock sound. Participants were instructed to tap with the woodblock
sound (quarter-note level), as in the eighth-note and rhythm levels (Mm. 5).

Mm. 5. Random-pitch (1.4 MB) [URL: http://dx.doi.org/10.1121/1.4890198.5].

3. Results

Lag zero cross-correlation coefficients between the IBIs of the stimuli and participants’
corresponding inter-tap intervals (ITIs), allowed us to assess the extent to which partic-
ipants adjusted the length of each tapping cycle to anticipate the duration of the cur-
rent cycle, which was determined by the time of the upcoming event. Thus, this mea-
sure indexed participants’ ability to predict upcoming tempo changes.22 A two-way
analysis of variance revealed differences in the level of prediction as a function of tem-
poral structure (natural, synthetic, random) and musical information (quarter-note,
eighth-note, rhythm, pitch; Fig. 3). Significance was computed at p< 0.01 and pairwise
t-tests were used for post hoc comparisons.

A main effect of temporal structure was observed [F(2,22)¼ 250.40, p< 0.001].
The correlation coefficients for the natural and synthetic fractal conditions were not
significantly different (p¼ 0.982), but both were significantly greater than for the ran-
dom temporal structure (p< 0.001). A main effect of musical information was also
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observed [F(3,33)¼ 40.40, p¼ 0.001]. The addition of metrical subdivisions (eighth-note
level) significantly improved prediction (p< 0.001). The addition of rhythm and pitch
information caused a significant overall decrease in prediction beyond metrical subdivi-
sion (p< 0.004), and there was no difference between the rhythm and pitch conditions
(p¼ 0.516). Interestingly, a significant two-way interaction was also observed
[F(6,66)¼ 11.74, p< 0.001]. In the natural fractal condition, the prediction performance
for the rhythm (p¼ 0.653) and pitch (p¼ 0.441) levels was not better than the eighth-
note level (Fig. 3). However, in the synthetic and random conditions, where the tempo
fluctuations were not related to the musical composition, correlations significantly
deteriorated with the addition of rhythm and pitch information (p< 0.002), revealing
that rhythm and pitch information were not irrelevant for prediction.

4. Discussion

These results demonstrate that participants use fractal temporal structure to predict
tempo fluctuations, and temporal structure alone is sufficient to anticipate changes in
tempo. This is true even when the tempo fluctuations are inappropriate for the music
(i.e., in the synthetic condition), although predictions deteriorate slightly when inappro-
priate rhythm and pitch information is added, which indicates the presence of a com-
peting source of information. Further experiments will be necessary to understand how
multiple sources of information interact to enable temporal predictions. Understanding
which sources of information are important for predicting upcoming sensory events is
critical to understanding how attention is allocated in time.8 Current models of
dynamic attending and temporal synchronization predict that people react to changes
in tempo, adjusting their frequency in response to the previous cycle length. The cur-
rent work shows that such models are inadequate, and more sophisticated models will
be necessary to explain anticipatory synchronization capabilities.23,24 Moreover, further
studies are needed to compare the influence of short- versus long-term memory on pre-
diction, and to compare the predictability of fractal and non-fractal stimuli with simi-
lar positive lag-1 autocorrelations. The development of new models may have a direct
application in music therapy; for example, temporal interaction is important in the
(re)emergence of healthy levels of 1/f structure in human gait for Parkinson’s disease
patients. Such models will also shed light on emotional communication in music per-
formance, as temporal fluctuations predict both reported affect15 and real-time changes
in neural activation.15 Future models will also inform our understanding of the

Fig. 3. Mean lag 0 cross-correlation (ITI� IBI) coefficients for each tempo condition and information level.
Error bars are standard error of the mean. A main effect of temporal structure was observed where natural and
synthetic fractal conditions were not significantly different (p¼ 0.982), but both were significantly greater than
random (p< 0.001). A main effect of musical information was observed. Metrical subdivisions significantly
improved prediction (p< 0.001). Adding rhythm or pitch information to the natural condition did not improve
predictions (p> 0.441). The addition of rhythm or pitch information decreased prediction for the synthetic and
random conditions: Synthetic eighth-note� synthetic rhythm p< 0.001; synthetic eighth-note� synthetic pitch
p< 0.001; random eighth-note� random rhythm p< 0.001; random eighth-note vs random pitch p¼ 0.002.
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perception of spoken language13 and other communication signals, more generally,
because synchronization with and anticipation of irregular rhythms appears to play a
critical role in rhythmic communication processes.
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