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Abstract

As robotic agents are called upon to perform in in-
creasingly complez and naturalistic physical environ-
ments, it will be necessary to develop design strate-
gies that enable the specification of complez tasks that
can be carried out in flexible ways. This requires
the both ability to react flezibly to dynamically chang-
ing environments as well as the abilily to perform
decision-making and sequencing of behavior. We de-
scribe an approach to decision-making and sequencing
that utilizes the qualitative theory of dynamical sys-
tems to model stable decision-making in changing en-
vironments. The task dynamics methodology is consid-
ered as an approach to scaling the 'dynamical systems’
approach to autonomous path planning.

1 Introduction

Understanding the integration of task directed
decision-making with the generation of individual be-
haviors is fundamental to understanding autonomous
agents. If the design of autonomous systems is to scale
to the performance of complex tasks, agents must be
able to reason in abstract terms about the task to
be performed. This endeavor represents a nontrivial
problem, and an adequate solution must display sev-
eral properties. First, there is a need for a structured
design methodology that supports analysis. Second,
to make design manageable and flexible, it is essential
that the methodology allow for decomposition of the
problem into manageable subproblems. Finally, the
approach should provide a powerful method of task
description so that complex systems can specified in
meaningful ways.

The “dynamical systems” approach for path plan-
ning and control [1, 2], is chosen as a point of de-
parture for this study because it is especially appro-
priate for describing autonomous behavior in dynamic
environments. In this approach a set of behavioral
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variables defines a state space in which a dynamics of
robot behavior is described. The dimensions of the
state space correspond to behavioral variables, such
as heading direction and velocity. Planning and con-
trol governed by a dynamical system that generates a
time course of the behavioral variables. The dynam-
ical system is specified as a vector field that governs
system behavior. The environment is also modeled at
a behavioral level. The environment provides behav-
ioral information that parameterizes a set of task con-
straints. Task constraints themselves are modeled as
component forces that define attractors and repellors
of a dynamical system. The contributions are com-
bined into a single vector field by superposition. The
resulting behavioral dynamics models the generation
of behavior in a stable, yet flexible way.

This paper describes an extension to the dynami-
cal systems approach, a task dynamics [3] that medi-
ates complex autonomous performance. Specifically,
a competitive dynamical system is used to model
decision-making at the task level. The dimensions
of the state space correspond to the set of task con-
straints. The state variables determine the relative
weighting of component forces in the behavioral dy-
namics. Decision-making and sequencing are governed
by a dynamical system operating at a faster time scale
than the behavioral dynamics. The task dynamics en-
forces a competition among task constraints for repre-
sentation at the behavioral level. The task is described
by a set of parameters to the task dynamics. These
parameters are tied to the environment and change as
the robot’s situation changes. Qualitatively different
behaviors arise a fixed points of the task dynamics.
Behavioral vector fields are synthesized as task execu-
tion proceeds. Bifurcations in the task dynamics give
rise to behavior switching, modeling decision-making
and sequencing.

After briefly reviewing the behavioral and task dy-
namics, an example of system performance is de-
scribed, and the potential for scalability of such sys-
tems is considered.
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2 A Dynamic Systems Approach to
Path Planning

2.1 Behavioral Dynamics

According to the dynamic approach, the behavior
of an agent is modeled as a time course of behavioral
variables generated by a dynamics that incorporates
both planning and control knowledge. We focus on the
dynamies of heading direction, assuming that velocity
can be appropriately controlled (see, for example, [4]).
For this one-dimensional system, the dynamics take
the following form.

é = f(4). (1)
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Figure 1: Task constraints and their contributions to
the vector field. A target (attractor, Fy,,); an obstacle

(repellor, F,;,); their composition, ¢ = Fysp + Fops.

Task constraints define confributions to the vector
field, f(¢), by modeling desired behaviors (e.g. head-
ing toward the target) as attractors,

Fiar = —a* Sin(‘ﬁ = 'I’!ar)‘ (2)

and to-be-avoided behaviors (e.g. heading toward an
obstacle) as repellors (see Figure 1).

Faba.- = Robs.- X Wo&s.- X Dobs,- (3)

The repellor corresponding to an individual obsta-
cle is the product of three functions. R, sets up a
generic repellor in the direction of the obstacle, W,
limits the angular range, and D,,, scales the strength
according to the obstacle’s distance from the agent.
Thus, the contribution of each obstacle is range lim-
ited. Details regarding the specific functional forms
may be found in [1]. Multiple obstacles are handled
by summing the contributions of individual obstacles.

Foba = Z: Foba. (4)
=1
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Finally, the contributions of individual task con-
straints (targef and other) are combined additively into
a single vector field as illustrated in Figure 1.

¢ = Fiar + Fobs + & (5)
Because certain constraints are modeled as repellors,
the planning dynamics i1s augmented by a stochas-
tic term that guarantees escape from unstable fixed
points.

2.2 Task Dynamics

To incorporate additional task constraints, the
strength of each contribution with may be modified
by a specific weight w; assigned to each type of task
constraint [3].

é:lwllFl+ItU3|F2+"'+lwn|Fn + & (6)

Weights are assigned through a competitive dynamics
that operates at a faster time scale than the behav-
ioral dynamics. This determines the strength of each
contribution depending upon the current situation as,

u)g:cx,‘w,-(l—10?)—Z7j_;wfwg+£h (7)
J#i

where 7 and j index the task constraints. The param-
eters to the competition dynamics are the «; and the
;i referred to as competilive advantage and competi-
tive interaction, respectively. The competitive advan-
tage, oy, of constraint ¢ is determined by its applica-
bility in the current situation, while the competitive
interaction, ; ;, summarizes the degree to which con-
straint ¢ is consistent or inconsistent with constraint j.
Competition produces sequences of behavior that are
generated reactively, in response to specific environ-
mental situations. For a closely related system, capa-
ble of generating complex preprogrammed sequences,
see [5).

2.3 An Example of Cooperative Naviga-
tion

As an example of the operation of such a system,
consider a task that is slightly more complicated than
autonomous navigation. Suppose there are two agents,
and both agents must navigate autonomously toward
a target location. In addition assume that the the
task requires two agents to stay near one another as
they make their way toward the target. Thus, the
task is described using three constraints, and we will
call the additional constraint other. Similarly to tar-
get seeking, we model the third constraint as a global
attractor.

Foun = —asin(¢ — Yorn) (8)
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Then the contribution of other is added to the com-
posite vector.

é’ = |wta!'|F!ar' o= |wobalFobs + |woth]Foth + noise (9)

We assume that if the agents come too close to one
another, they are to avoid collision in the same way as
they would avoid stationary obstacles.

As an example of how this system works, consider
the simulated situation illustrated in Figure 2. The
agents A and B begin in the lower left, moving to-
gether and steering more or less directly toward the
target. At this point the only active constraint is tar-
get. The agents encounter a wall, activating the ob-
stacle constraint, so that one steers to the left and
the other to the right. Had there been only a single
small obstacle, this would have been a good decision,
however, in this case agent B enters an enclosure. Af-
ter a short time, agent B’s other constraint is acti-
vated, deactivating fargef. Similarly, agent A begins
to look for agent B. After first trying a bad direction,
agent B loops around, and the two agents move along a
wall until they meet once again. As they near one an-
other, their obstacle constraints remains active (they
are avoiding collision with one another), and they ac-
tivate their farget constraints. Finally, agent B fol-
lows A to the target. In this configuration, only A’s
target constraint is active. For B, however, all three
constraints are active. This is because B is headed
simultaneously toward its target and toward agent A,
while it must also avoid collision with agent A.

This example shows several features of the compet-
itive dynamics approach. First, the task dynamics is
able to mediate between three interacting constraints
that together describe the task of cooperative naviga-
tion. Second, depending upon each agent’s situation,
the agent synthesizes a specific behavior, through a
weighting of task constraints in the behavioral dynam-
ics, that is appropriate to the agent’s current situation.
Finally, this adaptive weighting of task constraints re-
sults in the generation of sequences of behaviors, where
each behavior corresponds to a fixed point of the task
dynamics. Activation and deactivation of specific con-
straints results from bifurcations in the task dynamics
that arise as the agent’s situation changes.

3 Scaling the Dynamic Systems Ap-
proach

The above model is formulated entirely within the
qualitative theory of dynamical systems (for an intro-
duction of dynamical systems theory, see [6]). Task-
level decision-making is modeled as a competitive dy-
namical system operating at a faster time scale than
the behavioral dynamics. The task dynamics deter-
mines the relative contribution of various constraints
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Figure 2: Cooperative navigation (I). Constraint
weights (solid) and competitive advantages (broken)
are shown in upper left panels for Agent 1 (bot-
tom/right).

to the behavioral vector field. Fixed points of the task
dynamics thus correspond to specific behaviors that
are executed through the behavioral dynamics. Sev-
eral questions remain to be addressed, however. How
is such a system designed and analyzed? How well

-does the methodology scale to more complex systems?

Is such a system modular? How does one describe the
task to be performed? These issues are taken up in
this section.

3.1 Stability Analysis

Because the task-level reasoning is described as a
dynamical system, it supports an form of analysis that
is directly relevant to the agent’s ability to perform
a complex task. In particular, a stability analysis
(e.g. [6]) can be performed on the system described by
Equation 7 assuming a;,v;,; > 0, for the case of three
task constraints (for further description of this analy-
sis, see [3]). Such an analysis reveals the qualitative
behavior of the task dynamics, by enumerating the
set of equilibrium points for the three-dimensional sys-
tem and classifying each equilibrium point according
to its stability. Because the stability of each equilib-
rium point changes depending upon the values of the
parameters o; and 7;;, we also computed a set of sta-
bility conditions. The analysis (Table 1) reveals eight
equilibrium points, corresponding to eight unique be-
haviors that can be generated by the agent, seven of
which are stable.

One can group the attracting fixed points into three
classes of stable solutions. The first class of solutions
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Table 1: Fixed points and stability conditions for com-
petitive dynamics.

corresponds to one constraint being activated, and the
others deactivated. Let us refer to the active con-
straint as constraint 7. This solution is stable as long
as vi; > «j, V j # i. In other words, constraint { is
the sole winner of the competition whenever it actively
inhibits every other constraint.

The second class of solutions corresponds to two
constraints being activated and the third deactivated.
Let ¢ and j be the activated constraints, and & be the
deactivated constraint. Then this solution is stable
whenever a; > v;; and a; > 7;;. Additionally, it
must be the case that v; ¢ > a or vj,1 > ai. The lat-
ter condition says at least one of the active constraints
must be inhibiting constraint k. This so-called “aver-
aging solution” is given by:

o0y — OG5

@i = %ij Vi

(10)

If there is no competition between constraints, v;; =
0, Vi, j, both constraints are activated at full strength:
The resulting behavioral dynamics reduces to that de-
scribed by [1]. If there is some competition, both are
still active, but at reduced levels. The final class of so-
lutions consists of a “3-constraint averaging” solution,
where all three contributions are active. This point is
stable as long as a; > ¥;; for all j # 1.

This methodology supports such an analysis due
to the fact that the task-level decision-making is gov-
erned by a dynamical system. The analysis of the
thtee constraint system revealed that any possible
combination of constraints is available to the agent to
synthesize a corresponding behavior depending upon
the situation. In addition, the stability analysis
tells us which relative parameter values correspond to
which behaviors. This information that is valuable
when designing a system to perform a specific task, as
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described below.

3.2 Modularity and Scalability

The above analysis points to some interesting prop-
erties of the task dynamics regarding modularity and
scalability. The first thing to notice is that a complex
conspiracy of competitive interactions is not required
to activate or deactivate a constraint. A constraint is
deactivated whenever interaction from any single com-
peting constraint is great enough, conversely a con-
straint can be active only when it is consistent with
all other active constraints. Further, this observation
scales to systems of arbitrary numbers of constraints.
This implies that one can add a constraint to a pre-
vious design without disturbing the previous system,
simply by considering the interaction of a new con-
straint with each individual existing constraint. This
feature provides the kind of modularity that is neces-
sary for the incremental design (or evolution) of com-
plex autonomous systems.

A somewhat more general observation about the
form of the above analysis is that one designs the
task dynamics by considering only pairs of constraints.
This has important implications for the scalability of
the approach. First, note that designing the system
requires at most n? design decisions: n* — n com-
petitive interactions, plus n competitive advantages.
Next, note that one can count the number of unique
behaviors that arise in a n-constraint system. It is
simply the number of ways to chose one active be-
havior, plus the number of ways to chose two active
behaviors, and so on. In other words, the number of
behaviors generated in such a system is:

N___G)Jr‘.&(:):i(j):zn_l (11)

i=1
Thus, in an n-constraint system, the task dynamics
provides 2" — 1 unique behaviors, yet the system is
polynomial in both design complexity and time com-
plexity.

3.3 Task Description

Finally, the task is described by providing a set of
functions that link situations in the environment to the
parameters of the task dynamics. Relative parameter
values determine how behaviors are composed, and
the evolution of parameter values determine when bi-
furcations occur, thus how behaviors are sequenced.
The above stability analysis describes how the rela-
tive values of the 7; ; and a; determine which behav-
ior arises from the task dynamics. This information
can be used to design functions that tie competitive
interaction and competitive advantage to situations in
the environment.
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First, consider the design of competitive interac-
tion among task constraints. Competitive interaction
must be able to capture situations in which different
task constraints (modeled as attractors and repellors
of the behavioral dynamics) are incompatible with one
another. In general, when combining an attractor and
a repellor one must guard against the formation of
spurious attractors (or repellors). When combining
like types of constraints (e.g. attractor and attractor)
one must guard against unwanted constraint averag-
ing. For details regarding such considerations see [3].

Consider the design of competitive interaction be-
tween farget and obstacle. Whenever an attractor and
a repellor collide, unwanted consequences may result,
because the two contributions are non-independent
and contradictory. Thus, one may construct a function
that describes the competitive interaction between ob-
stacle and target as:

—¢2PtarPoba
i, (12)

where Pyyr and P,s are “fixed point detectors” that
capture the location and stability of the fixed points
for each contribution to the behavioral dynamics (see
[3]). This function is strongly peaked at the point of
attractor-repellor collision, as shown in Figure 3). The
attractor and repellor do not compete unless they are
close together in the behavioral state space.

Yobs, tar = ec2

Competitive Interaction

1 T T

e 0 w2 x
¢
Figure 3: Capturing incompatibility between an at-

tractor and a repellor: Competitive interaction be-
tween obstacle and target.

As a second example, consider competition between
two attractors such as target and other. If both con-
straints are active, the agent will move in an average
direction. Thus, in most situations it is necessary to
enforce competition between the two attractors, al-
though there will also be in some situations in which
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moving in their average direction is the appropriate
behavior. When the target and the other agent are
in opposite directions it is necessary to force a deci-
sion, but when they lie in the same direction, both
constraints can be satisfied simultaneously. We can
accomplish this type of competitive interaction using
the following function.

Yoth,tar = bi(tanh(—bs cos(Prar —Porn)+b3)+1) (13)

Competition is high except for a certain region around
an angular difference of zero, as illustrated in Figure
4.

Competitive Interaction
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Figure 4: Capturing incompatibility between two at-
tractors: Competitive interaction between target and
other, Yoth tar = Ytar,oth.- Competition is maximum
unless the target and the other agent lie in approxi-
mately the same direction.

Finally, competitive advantages must be chosen so
that, when two behaviors compete the proper outcome
of the competition can be determined. As an exam-
ple, consider the competitive advantage of other. To
enforce the constraint that the agents remain close to-
gether, one may choose a function that will deactivate
other when the agents are close enough to one another.

gloth

aotp = tanh( = ) (14)

Here, 7o is the distance to the other agent, and the
constant d; determines how close we wish the agents to
be. Thus, the agents will try to maintain a maximum
distance of di between one another. If the agents get
farther away than dp, they will attempt to activate
their other constraints.

Thus, the according to this approach the task is
described in terms of a set of functions that tie the
parameters of the task dynamics to situations in the
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Figure 5: Competitive advantage of other. As dis-
tance to the other agent increases beyond a threshold
value, competitive advantage, a,p, increases beyond
competitive interaction from target.

environment. As the agent moves about the world, the
relative values of these parameters change, leading to
bifurcations in the task dynamics. Bifurcations model
decision-making and sequencing of behavior. Thus, for
this methodology to be applicable, it is necessary that
the task be describable in terms if such competitive
advantage and competitive interaction functions.

4 Concluding Remarks

A task dynamics has been proposed as a method
for describing complex behaviors within a dynamical
systems framework. A competitive dynamical sys-
tem makes it is possible to specify requirements that
are more complex than simple navigation. This abil-
ity arises from the ability to determine which con-
straints should contribute to the behavioral dynam-
ics, 1.e. which behavior is appropriate, in any given
situation. We defined a “behavior” as a qualitatively
unique combination of task constraints that defines
a particular set of contributions to the behavioral dy-
namics. Each combination of task constraints arises as
an asymptotically stable fixed point of the competitive
dynamics, providing a number of interesting proper-
ties. First, each behavior is stable in the sense that it
is robust to the/presence of noise in the system. This
property arises from the stability of the fixed points
that generate the behaviors. Second, each behavior is
stable in the sense that it is robust to ambiguity in
the environment. This property arises due to hystere-
sis — when more than one fixed point is stable, the past
history of the system determines performance. Third,
the agent is able to flexibly determine which behav-
ior is appropriate at any given time. This property
arises due to bifurcations in the competitive dynam-
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ics: As new situations arise, parameters change, old
fixed points disappear, and new fixed points appear.

An advantage of the task dynamics approach is that
it is based upon the qualitative theory of dynamical
systems, and thus a formal analysis of the system is
possible. Further, due to the choice of state space
this analysis is directly relevant to understanding and
designing the decision-making and sequencing behav-
ior of the autonomous system. A weakness of this
method lies in the task description. The task is de-
scribed by mathematical functions for which the de-
sign principles have yet to be articulated. This does
not mean that such principles cannot be formalized,
simply that this job has yet to be done. If it turns out
to be possible to formalize a set of design principles,
then it may be feasible to create a task description
language in which a designer could describe the task,
and a 'compiler’ could produce competitive advantage
and interaction functions that describe the task within
this framework. Another possibility is that such funec-
tions could be learned using an appropriate function
approximation method.

Perhaps the primary advantage of this approach is
that the task dynamics solution scales nicely to the
design complex systems. In this paper we used the
example of two cooperating robots, but more complex
systems are possible. Essentially, the design decom-
poses the problem into interactions between pairs of
behaviors. This allows not only for a compact sys-
tem description, but also permits incremental design.
Thus more complex systems can evolve from simpler
systems. Future research will exploit this property
of the task dynamics approach to the design of more
complex autonomous agents and systems of cooperat-
ing agents.
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